ANTLR Reference Manual

ANTLR
=& Reference Manual

ANTLR]
Guru Credits

Project Lead
Terence Parr

Support from

jGuru.com
Your View of the Java Universe

Help with initial coding
John Lilly, Empathy Software

C++ code generator by
Peter Wells and Ric Klaren

Sather code generator by
Mika lllouz

Infrastructure support from Perforce:
The world's best source code control system

Substantial intellectual effort donated by
John Mitchell

Scott Stanchfield
Jim Coker
Monty Zukowski (Streams, translation)
Chapman Flack (UNICODE, streams)

ParseView parser debugger by
Scott Stanchfield

ANTLR Version 2.7.1

Version: $Id: //depot/code/org.antlr/main/main/doc/index.html#8 $

October 1, 2000
Check out the ANTLR FAQ at jguru.com!

Check out the Bug Database (ok, so it's out of date)

Check out http://www.ANTLR.org

ParseView debugger is available. (for prior versions)

http://www.antlr.org/doc/ (1 of 7) [8/10/2001 10:45:13 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/
mailto:parrt@jguru.com
http://www.jguru.com/
http://www.empathy.com/
mailto:pete@yamuna.demon.co.uk
mailto:klaren@cs.utwente.nl
mailto:illouz@pacbell.net
http://www.perforce.com/
mailto:johnm@magelang.com
mailto:thetick@magelang.com
mailto:jcoker@magelang.com
mailto:mzukowski@bco.com
mailto:flack@cs.purdue.edu
http://www.jguru.com/thetick/parseview
mailto:thetick@magelang.com
http://www.jguru.com/faq/ANTLR
http://www.antlr.org/bug/index.html
http://www.antlr.org/
http://www.jguru.com/thetick/parseview

ANTLR Reference Manual

If you are looking for the previous main version (PCCTS 1.33) of ANTLR rather than the
Java/C++/Sather version (2.x), see Getting started with PCCTS.

Download ANTLR 2.7.1.

ANTLR 2.7.1 release notes

ANTLR Meta-L anguage

o Meta-Language Vocabulary
o Header Section
o Parser Class Definitions

o Lexical Analyzer Class Definitions

o Tree-parser Class Definitions
« Options Section

» Tokens Section

« Grammar Inheritance

o Rule Definitions

« Atomic Production € ements

o Simple Production € ements

« Production Element Operators

« Token Classes
o Predicates
o Element Labels
« EBNF Rule Elements
« Interpretation Of Semantic Actions
o Semantic Predicates
« Syntactic Predicates
o Fixed depth lookahead and syntactic predicates
o ANTLR Meta-L anguage Grammar

Lexical Analysiswith ANTLR

o Lexica Rules

o Return values
o Skipping characters

o Distinquishing between lexer rules

o Definition order and lexical ambiquities

o Keywords and literals

o Common prefixes

http://www.antlr.org/doc/ (2 of 7) [8/10/2001 10:45:13 AM]

http://www.antlr.org/pccts133.html
http://www.antlr.org/download

ANTLR Reference Manual

Token definition files

O

o Character classes

o Token Attributes

o Lexical lookahead and the end-of-token symbol
« Scanning Binary Files

« Scanning Unicode Characters

o Manipulating Token Text and Objects

o Manipulating the Text of aLexical Rule
0 Token Object Creation
0 Heterogeneous Token Object Streams

« Filtering Input Streams
o ANTLR Masquerading as SED
« Nongreedy Subrules
o Greedy Subrules
o Nongreedy Lexer Subrules
o Limitations of Nongreedy Subrules
« Lexical States
« The End Of File Condition
o Case sengitivity

« lgnoring whitespace in the lexer

e Tracking Line Information

o Tracking Column Information

« Using Explicit L ookahead

o A Surprising Use of A Lexer: Parsing

« But..We've Always Used Automata For Lexical Analysis!

ANTLR Tree Parsers

o What's atree parser?

« What kinds of trees can be parsed?
Tree grammar rules

o Syntactic predicates

o Semantic predicates

o An Example Tree Walker
Transformations

o An Example Tree Transformation
Examining/Debugging ASTs

http://www.antlr.org/doc/ (3 of 7) [8/10/2001 10:45:13 AM]

ANTLR Reference Manual

Token Streams

« Introduction

o Pass-Through Token Stream

o Token Stream Filtering

« Token Stream Splitting
o Example
o Filter Implementation
o How To Use This Filter
o Tree Construction

0 Garbage Collection I ssues

o Notes
o Token Stream Multiplexing (aka"Lexer states")
o Multiple Lexers

0 Lexers Sharing Same Character Stream

o Parsing Multiplexed Token Streams
o The Effect of Lookahead Upon Multiplexed Token Streams
o Multiple Lexers Versus Caling Another Lexer Rule

o The Future

Token Vocabularies
« Introduction

o How does ANTLR decide which vocabulary symbol gets what token type?
o Why do token types start at 4?
o What files associated with vocabulary does ANTLR generate?

o How does ANTLR synchronize the symbol-type mappings between grammars
in the same file and in different files?

o Grammar Inheritance and Vocabularies

« Recognizer Generation Order
e Tricky Vocabulary Stuff

Error Handling and Recovery
o ANTLR Exception Hierarchy
« Modifying Default Error Messages With Paraphrases
o Parser Exception Handling

e Specifying Parser Exception-Handlers

o Default Exception Handling in the Lexer

http://www.antlr.org/doc/ (4 of 7) [8/10/2001 10:45:13 AM]

http://www.antlr.org/doc/streams.html
http://www.antlr.org/doc/streams.html#Introduction
http://www.antlr.org/doc/streams.html#Pass-Through Token Stream
http://www.antlr.org/doc/streams.html#Token Stream Filtering
http://www.antlr.org/doc/streams.html#Token Stream Splitting
http://www.antlr.org/doc/streams.html#Example
http://www.antlr.org/doc/streams.html#Filter Implementation
http://www.antlr.org/doc/streams.html#How To Use This Filter
http://www.antlr.org/doc/streams.html#Tree Construction
http://www.antlr.org/doc/streams.html#Garbage Collection Issues
http://www.antlr.org/doc/streams.html#Notes
http://www.antlr.org/doc/streams.html#lexerstates
http://www.antlr.org/doc/streams.html#Multiple Lexers
http://www.antlr.org/doc/streams.html#Lexers Sharing Same Character Stream
http://www.antlr.org/doc/streams.html#Parsing Multiplexed Token Streams
http://www.antlr.org/doc/streams.html#The Effect of Lookahead Upon Multiplexed Token Streams
http://www.antlr.org/doc/streams.html#Multiple Lexers Versus Calling Another Lexer Rule
http://www.antlr.org/doc/streams.html#The Future

ANTLR Reference Manual

Java Runtime Model
« Programmer's Interface
o What ANTLR generates
« Multiple Lexers/Parsers With Shared Input State
o Parser Implementation

o Parser Class

o Parser Methods

o EBNF Subrules

o Production Prediction

0 Production Element Recognition
o Standard Classes
o Lexer Implementation

o Lexer Form
o Creating Your Own L exer
o Lexical Rules

« Token Objects

» Token Lookahead Buffer

C++ Runtime model
o C++ notes
o Building the runtime
o Getting C++ output
o Changing the AST Type
o Using Heterogeneous AST types

o A grammar template

Sather Runtime Model
« Programmer's Interface
o What ANTLR generates
« Multiple Lexers/Parsers With Shared Input State
o Parser Implementation

o Parser Class

o Parser Methods

o EBNF Subrules

o Production Prediction

0 Production Element Recognition

o Lexer Implementation

http://www.antlr.org/doc/ (5 of 7) [8/10/2001 10:45:13 AM]

ANTLR Reference Manual
o Lexer Form
o Creating Your Own Lexer

o Lexical Rules

ANTLR Tree Construction

« Notation

o Controlling AST construction

o Grammar annotations for building ASTs
0 Leaf nodes
0 Root nodes

0 Turning off standard tree construction

o Tree node construction

o AST Action Trandation
« Invoking parsersthat build trees
o AST Factories
o Heterogeneous ASTs

o An Expression Tree Example

o Describing Heterogeneous Trees With Grammars
e AST (XML) Seridization
o AST enumerations

o A few examples
o Labeled subrules
o Reference nodes

o Required AST functionality and form

Grammar |nheritance
« Introduction and motivation

« Functionality
o« Where Are Those Supergrammars?

o Error Messages

Options

« File, Grammar, and Rule Options
o Options supported in ANTLR
0 language: Setting the generated language
o k: Setting the lookahead depth
o importVocab: Initial Grammar V ocabulary

http://www.antlr.org/doc/ (6 of 7) [8/10/2001 10:45:13 AM]

ANTLR Reference Manual

O

O

exportV ocab: Naming Output V ocabulary

testLiterals. Generate literal-testing code
defaultErrorHandler: Controlling default exception-handling
codeGenM akeSwitchThreshold: controlling code generation
codeGenBitsetTestThreshold: controlling code generation
buildAST: Automatic AST construction

ASTLabel Type: Setting label type

charVocabulary: Setting the lexer character vocabulary

warnWhenFollowAmbiqg

« Command Line Options

http://www.antlr.org/doc/ (7 of 7) [8/10/2001 10:45:13 AM]

ANTLR 2.7.1 Release Notes

<«
JGuru
ANTLR

jGuru

ANTLR 2.7.1
Rel ease Not es

October 1, 2000

The ANTLR 2.7.1 release is a bug fix release, brought to you by those hip cats at jGuru.com.
One of the bug fixes, however, allows UNICODE characters to be recognized for the first time. :)

Enhancements

ANTLR 2.7.1 has a few enhancements:

¢ ANTLR now allows UNICODE characters because Terence made case-statement
expressions more efficient ;) See the unicode example in the distribution and the brief
blurb in the documentation.

¢ Massively improved C++ code generator (see below).

o Added automatic column setting support. See updated doc and new
examples/java/columns directory.

e Ter addedt hr ows to tree and regular parsers .

e Added an ant | r/ ext r as directory, currently containing only antlr-emacs.el by
Christoph.Wedler@sap-ag.de. Thanks, Christoph!

C++ Code Generation

Pete Wells and Ric Klaren have pretty much gutted the C++ code generator to use templates and
so on. Here are few notes (with lib/cpp/Changelog having more goodies). Ric has totally worked
his ass off to make the C++ what it is now! :)

Enhancements to C++ code generator for:

¢ * #line generation for easier debugging of action code. Turn on/off
with option genHashLines (grammar option).

¢ * Cleaner generated code, by providing options to specify namespace
prefixes. Grammar options namespaceAntlr and namespaceStd can
be set to "antlr::" and "std::" or to blank if your compiler
doesn't support namespaces.

e * Generate comments to explain what the bitsets represent.
e * Fix bug with -traceTreeParser code.

e * Avoid warnings about unused variable _savelndex.

¢ *Remove final, illegal comma in token types enum.

Enhancements to C++ support library for:

o * Performance enhancements. Thanks to several people for
suggestions/patches here. Improvements to memory management for
building strings, and buffering of tokens.

e * Support for Metrowerks Codewarrior, and Sun CC 5.0.
e * Fix problem with multi-threaded lexers using static variable.
e * Slight tidy up (more planned).

Additionally, there have been enhancements made to the C++ side to mirror the Java side
changes.

Ric Klaren (2.7.1a3 C++ changes) says:

http://www.antlr.org/doc/antlr271release.html (1 of 4) [8/10/2001 10:45:21 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/
http://www.jguru.com/
mailto:Christoph.Wedler@sap-ag.de

ANTLR 2.7.1 Release Notes

- action.g allow "' in ID rule so C++ namespace qualifiers work.

- CppCodegernator the "' fix for namespaceXXX options. As requested by Michael
Schmitt.

- Several cleanups in the Exception classes (basically a hoisting of code) and one or two
new constructors with more line/column param's.

- Default value for column in LexerinputState to 1. as suggested by someone on the list..
(name | would have to look up)

- A makefile for the C++ lib directory. Not yet the autoconf stuff posted by someone (whose
name | would also have to look up) it would imply a bigger workover of the lib/cpp directory.
Which is harder to do with diff's.

- Some changes | made after enabling the effective C++ warnings on g++ (minor drivle
basically.. in most places not really needed)

- Several virtuals added to methods. Based on a suggestion also by Ernest Pasour. It
makes the error messages from the thrown exceptions a lot better

Bug Fixes

In no particular order, here are the improvements/fixes made to 2.7.0 to arrive at 2.7.1 (via
2.7.1al..a4):

columns started at O for line 1. fixed.

Bob McWhirter added -o fix so that antlr looks for import vocab stuff in -o director if not
found in $CWD (current working directory).

Added optimization so that large unicode ranges don't result in giant switch case
expressions. For example, added charVocabulary="u0003"..\uffff' to java.g. Took antlr 24s
to generate 51k lexer file vs 9sec without. New 2.7.1 did it with big vocab in 14 sec. Oh,
and the interesting thing is that with the big vocab and new optimization, it's actually
smaller than with vocab set to ASCII.)

added a build script.

Robert Colguhoun ric@trump.net.au gave me a patch to pull stuff out of Tool.java that was
causing it to be required for runtime even.

Jerry James (james@eecs.ukans.edu) gave me a patch to make the labels for
heterogeneous tree nodes match the specific AST type rather than plain AST.

ANTLR didn't like curlies in quotes (preproc.g was hosed). It now parses:

cl ass A extends Parser;

t okens {
/1 hi |}
/~k

fds
}/

TOK_LBRACE="{";

TOK_RBRACE="1}";

}

a: "{" B"}";

Fixed C++ code generator to allow ~(Z|G)
Parser.getinputState called setinputState.

ANTLR now allows comments between header, options, and tokens and then '{' now.
Examples:

options //fdkjfds

http://www.antlr.org/doc/antlr271release.html (2 of 4) [8/10/2001 10:45:21 AM]

mailto:rjc@trump.net.au
mailto:(james@eecs.ukans.edu

ANTLR 2.7.1 Release Notes

tokens //testing

{

A="a",;
}

Made fields of CommonToken protected (open to subclasses), added col. added column
tracking support; tabs are counted as 1 unless you override tab(). Called from consume();
bumps by one by default. Overhead is minimal; only called on tabs. extra increment for all
consume()s now extra int in CommonToken.

/**

advance the current columm nunber by an appropriate amount. If
you do not override this to specify how much to junp for a
tab, then tabs are counted as one char. This nethod is called
from consune() .
*/
public void tab() {
/'l update inputState.columm as function of
/1 inputState.colum and tab stops.
/'l For exanple, if tab stops are colums 1
// and 5 etc... and colum is 3, then add 2
/1 to columm.
i nput St at e. col um++;
}

added CharScanner.setColumn

warnings were going to stdout, make go to stderr.

added check for unterminated rules. Labels in column 1 result in a warning.

wasn't providing always exactly 4 digits for \u chars in JavaCharFormatter.escapeChar.
Fixed that nasty follow cycle grammar analysis bug Tom Moog and others found.
C++: CharScanner.cpp toLower, changed arg from char to int.

added column support to C++ output

Sather fixes put in, brought up to snuff with Java/C++.

ANTLR continued on after discovering duplicate grammar. 'caused later exception.
Bug fix: $setType(w); didn't work because of the leading space.

For the java.tree.g grammar: the NEW operator didn't allow an optional (objBlock)?

HTML: Added lots of tweaks to html.g, Made blockquote handle nested content. Fixed bug

in COMMENT_DATA that wouldn't let - appear in comment. Made COMMENT scarf WS
after comment

Added to runtime jars (bigger but too lazy to weed out unnecessary var refs that force
inclusion):

antlr/DefineGrammarSymbols.class
antlry/ANTLRGrammarParseBehavior.class
antlr/MakeGrammar.class
antlry/ANTLRParser.class
antl/ANTLRTokenTypes
antlr/LLkGrammarAnalyzer
antlr/GrammarAnalyzer

Added constructors.

publ i c CommpnASTW t hHi ddenTokens() {
super () ;

publ i ¢ CormpnASTW t hHi ddenTokens(Token tok) {
super (t ok);

http://www.antlr.org/doc/antlr271release.html (3 of 4) [8/10/2001 10:45:21 AM]

ANTLR 2.7.1 Release Notes

ANTLR Installation

ANTLR comes as a single zip or compressed tar file. Unzipping the file you receive will produce a
directory called antlr-2.7.1 with subdirectories antlr, doc, examples, cpp, and examples.cpp. You need
to place the antlr-2.7.1 directory in your CLASSPATH environment variable. For example, if you
placed antir-2.7.1 in directory /tools, you need to append

[tools/antlr-2.7.1
to your CLASSPATH or.
\tools\antlr-2.7.1
if you work on an NT or Win95 box.
References to antlr.* will map to /tools/antlr-2.7.1/antlr/*.class.

You must have at least JDK 1.1 installed properly on your machine. The ASTFrame AST viewer
uses Swing 1.1.

JAR FILE

Try using the runtime library ant | r . j ar file. Place it in your CLASSPATH instead of the
antlr-2.7.1 directory. The jar includes all parse-time files needed (if it is missing a file, emalil
parrt@jguru.com) You cannot run the antlr tool itself with the jar, but your parsers should run with
just this jar file. It's pretty small, around 75k uncompressed.

RUNNING ANTLR

ANTLR is a command line tool (although many development environments let you run ANTLR on
grammar files from within the environment). The main method within antlr.Tool is the ANTLR entry
point.

java antlr.Tool file.g

The command-line option is -diagnostic, which generates a text file for each output parser class
that describes the lookahead sets. Note that there are number of options that you can specify at
the grammar class and rule level.

Options -trace, -traceParser, -traceTreeParser may be used to track the lexer, parser, and tree
parser invocations.

Try the new -html option to generate HTML output of your grammar(s); this is only partially done.

If you have trouble running ANTLR, ensure that you have Java installed correctly and then ensure
that you have the appropriate CLASSPATH set.

Version: $Id: //depot/code/org.antlr/release/antlr-2.7.1/doc/antlr271release.html#2 $

http://www.antlr.org/doc/antlr271release.html (4 of 4) [8/10/2001 10:45:21 AM]

mailto:parrt@magelang.com

ANTLR Specification: Meta Language

JGuru
ANTLR

iGuru

ANTLR 2 Meta-Language

ANTLR 2 accepts three types of grammar specifications -- parsers, lexers, and tree-parsers
(also called tree-walkers). Because ANTLR 2 uses LL (k) analysisfor al three grammar
variants, the grammar specifications are similar, and the generated |exers and parsers behave
similarly.

Note: in this document, the word "parser" usually includes tree-parsers as well as token
stream parsers, except where noted.

Meta-Language Vocabulary

Whitespace. Spaces, tabs, and newlines are separators in that they can separate ANTLR
vocabulary symbols such as identifiers, but are ignored beyond that. For example,

"Fi rst Nanme Last Nane" appears as a sequence of two token referencesto ANTLR not
token reference, space, followed by token reference.

Comments. ANTLR accepts C-style block comments and C++-style line comments.
Java-style documenting comments are allowed on grammar classes and rules, which are
passed to the HTML output if requested. For example,

[**Thi s granmmar recogni zes sinpl e expressions
* @ut hor Terence Parr

*/

cl ass ExprParser;

[**Match a factor */
factor : ... :

Characters. Character literals are specified just like in Java. They may contain octal-escape
characters(e.g.,' \ 377"), Unicode sequences (e.g., ' \ uFFFF'), and the usual specia
character escapesrecognized by Java(' \b', "\r', "\t', "\n', "\f'", "\'",
"\\"). Inlexer rules, single quotes represent a character to be matched on the input
character stream. Single-quoted characters are not yet supported in parser rules.

End of file. The EOF token is automatically generated for use in parser rules:
rule : (statenent)+ EOF,

Y ou can test for EOF _CHAR in actions of lexer rules:

/'l make sure nothing but new ine or
/1 EOF is past the #endif

ENDI F

{ bool ean eol =f al se;

} "#endi f"
¢ ("\'n" | "\r") {eol=true;})?
{ if (leol) {

if (LA(1)==EOF_CHAR) {error("EOF");}
el se {error("lInvalid chars");}

http://www.antlr.org/doc/metalang.html (1 of 18) [8/10/2001 10:45:34 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR Specification: Meta Language

While you can test for end-of-file as a character, it is not really a character--it is a condition.
Y ou should instead override Char Scanner . uponEOF() , in your lexer grammar:

/** This method is called by YourLexer.nextToken()
* when the | exer has

hit EOF condition. EOF is NOT a character.

This method is not called if EOF is reached
during syntactic predicate eval uation or during
eval uation of normal |exical rules, which
presumably woul d be an | OException. This

traps the "normal "™ EOF * condition.

UponEOF() is called after the conplete eval uation
of the previous token and only if your parser asks
for anot her token beyond that |ast non- EOF token.

You m ght want to throw token or char stream
exceptions like: "Heh, premature eof" or a retry
stream exception ("I found the end of this file,
go back to referencing file").

/

public void uponEOF()

t hrows TokenStreanException, Char StreanException

{
}

The end-of-file situation is a bit nutty (version 2.7.1) because Terence used -1 as a char not
anint (-1 is'\uFFFF'...oops). Terence will fix aswe get better at Unicode.

L T R T T T R S R R R N

Strings. String literals are sequences of characters enclosed in double quotes. The characters
In the string may be represented using the same escapes (octal, Unicode, etc.) that are valid
in character literals.

In lexer rules, strings are interpreted as sequences of characters to be matched on the input
character stream (e.g., " f or " isequivalentto' f' 'o" 'r').

In parser rules, strings represent tokens, and each unique string is assigned a token type.
However, ANTLR does not create lexer rules to match the strings. Instead, ANTLR enters
the strings into aliterals table in the associated lexer. ANTLR will generate code to test the
text of each token against the literals table, and change the token type when amatch is
encountered before handing the token off to the parser. Y ou may also perform the test
manually -- the automatic code-generation is controllable by alexer option.

Y ou may want to use the token type value of astring literal in your actions, for examplein
the synchronization part of an error-handler. For string literals that consist of alphabetic
characters only, the string literal value will be a constant with aname like LITERAL _xxx,
where xxx is the name of the token. For example, the literal "return" will have an associated
value of LITERAL return. You may also assign a specific label to aliteral using the
tokens section.

http://www.antlr.org/doc/metalang.html (2 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

Token references. Identifiers beginning with an uppercase letter are token references. The
subsequent characters may be any letter, digit, or underscore. A token reference in a parser
rule results in matching the specified token. A token referencein alexer rule resultsin acall
to the lexer rule for matching the characters of the token. In other words, token referencesin
the lexer are treated as rule references.

Token definitions. Token definitionsin alexer have the same syntax as parser rule
definitions, but refer to tokens, not parser rules. For example,

cl ass MyParser extends Parser;
idList : (ID)+; /1l parser rule definition

cl ass MyLexer extends Lexer;
ID: ('a.."z")+ ; /| token definition

Rule references. |dentifiers beginning with alowercase letter are referencesto ANTLR
parser rules. The subsequent characters may be any letter, digit, or underscore. Lexical rules
may not reference parser rules.

Actions. Character sequences enclosed in (possibly nested) curly braces are semantic
actions. Curly braces within string and character literals are not action delimiters.

Arguments Actions. Character sequences in (possibly nested) square brackets are rule
argument actions. Square braces within string and character literals are not action delimiters.
The arguments within [] are specified using the syntax of the generated language, and

should be separated by commas.

codeBl ock

[int scope, String nane] // input argunents
returns [int X] /1l return val ues
a {int y}:

/'l pass 2 args, get return y=cbl ock[1, "John"]

Many people would prefer that we use normal parentheses for arguments, but parentheses
are best used as grammatical grouping symbols for EBNF.

Symbols. The following table summarizes punctuation and keywordsin ANTLR.

Symbol Description

(...) subrule

(...)* closure subrule
(...)+ positive closure subrule

(...)7? optional

{...} semantic action
[...] rule arguments
{...}? semantic predicate

(...)=> syntactic predicate

http://www.antlr.org/doc/metalang.html (3 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

alternative operator

range operator

~ not operator

wildcard

= assignment operator

label operator, rule start

: rule end
<...> element option
cl ass grammar class
ext ends specifies grammar base class
returns specifies return type of rule
opti ons options section
t okens tokens section
header header section
t okens token definition section

Header Section

A header section contains source code that must be placed before any ANTLR-generated
code in the output parser. Thisismainly useful for C or C++ output due to their requirement
that elements be declared before being referenced. In Java, this can be used to specify a
package for the resulting parser, and any imported classes. A header section looks like:

header ({
source code in the | anguage generated by ANTLR;

}

The header section isthe first section in agrammar file.

Parser Class Definitions

All parser rules must be associated with a parser class. A grammar (.g) file may contain an
arbitrary number of parser class definitions (along with lexers and tree-parsers). Each parser
class specification precedes the options and rule definitions of the parser. A parser
specification in agrammar file often looks like:

{ optional class preanble }

cl ass Your Par serCl ass extends Parser:;
options

t okens. ..

parser rules...

When generating code in an object-oriented language, parser classes result in classesin the

http://www.antlr.org/doc/metalang.html (4 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

output, and rules become member methods of the class. In C, classes would result in
st ruct s, and some name-mangling would be used to make the resulting rule functions
globally unique.

The optional class preamble is some arbitrary text enclosed in {}. The preamble, if it exists,
will be output to the generated class file immediately before the definition of the class.

Enclosing curly braces are not used to delimit the class because it is hard to associate the
trailing right curly brace at the bottom of afile with the left curly brace at the top of thefile.
Instead, a parser class is assumed to continue until the next cl ass statement.

Lexical Analyzer Class Definitions

A parser class resultsin parser objects that know how to apply the associated grammatical
structure to an input stream of tokens. To perform lexical analysis, you need to specify a
lexer class that describes how to break up the input character stream into a stream of tokens.
The syntax is similar to that of a parser class:

{ optional class preanble }

cl ass YourLexerd ass extends Lexer;
options...

t okens. ..

| exer rules...

Lexical rules contained within alexer class become member methods in the generated class.
Each grammar (.g) file may contain an arbitrary number of lexer classes. The parser and
lexer classes may appear in any order.

The optional class preamble is some arbitrary text enclosed in {}. The preamble, if it exists,
will be output to the generated class file immediately before the definition of the class.

Tree-parser Class Definitions

A tree-parser islike a parser, except that is processes atwo-dimensional tree of AST nodes
instead of a one-dimensional stream of tokens. Tree parsers are specified identically to
parsers, except that the rule definitions may contain a special form to indicate descent into
the tree.

{ optional class preanble }

cl ass Your TreePar serd ass extends TreeParser;
opti ons

t okens. ..

tree parser rules...

Options Section

Rather than have the programmer specify a bunch of command-line arguments to the parser
generator, an options section within the grammar itself servesthis purpose. Thissolution is
preferable because it associates the required options with the grammar rather than ANTLR
invocation. The section is preceded by the opt i ons keyword and contains a series of
option/value assignments. An options section may be specified on both a per-file,
per-grammar, and per-rule basis.

http://www.antlr.org/doc/metalang.html (5 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

Y ou may also specify an option on an element, such as atoken, reference.

Tokens Section

If you need to define an "imaginary” token, one that has no corresponding real input symbol,
use the tokens section to define them. Imaginary tokens are used often for tree nodes that
mark or group a subtree resulting from real input. For example, you may decide to have an
EXPR node be the root of every expression subtree and DECL for declaration subtrees for

easy reference during tree walking. Because there is no corresponding input symbol for
EXPR, you cannot reference it in the grammar to implicitly defineit. Use the following to

define those imaginary tokens.

t okens {
EXPR;
DECL;

}

Theformal syntax is:

t okenSpec : "tokens" LCURLY
(tokenltem SEM) +
RCURLY

tokenltem : TOKEN ASSI GN STRI NG (t okensSpecOpti ons) ?
| TOKEN (tokensSpecOptions)?
| STRI NG (tokensSpecOptions)?

t okensSpecOpt i ons
. n <ll

id ASSI GN optionVal ue

(SEM id ASSI GN optionVal ue)*

n >l|

Y ou can also define literals in this section and, most importantly, assign to them avalid
label asin the following example.

t okens {
KEYWORD VO D="voi d";
EXPR;
DECL,
I NT="int";
}

Strings defined in thisway are treated just asif you had referenced them in the parser.

If agrammar imports a vocabulary containing atoken, say T, then you may attach aliteral to
that token typesimply by adding T="a | i t er al " to the tokens section of the grammar.

Similarly, if the imported vocabulary definesaliteral, say " _i nt 32", without alabel, you
may attach alabel vial NT32="_i nt 32" in the tokens section.

http://www.antlr.org/doc/metalang.html (6 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

Y ou may define options on the tokens defined inthet okens section. The only option
avallable so far isAST=cl ass-type-to-instanti at e.

/1 Define a bunch of specific AST nodes to build.
/1 Can override at actual reference of tokens in
[l grammar.
t okens {

PLUS<AST=PLUSNode>;

STAR<AST=MULTNode>;

}
Grammar Inheritance

Object-oriented programming languages such as C++ and Java allow you to define a new
object asit differs from an existing object, which provides a number of benefits.
"Programming by difference” saves devel opment/testing time and future changes to the base
or superclass are automatically propagated to the derived or subclass. ANTLR 2.x supports
grammar inheritance as a mechanism for creating a new grammar class based on a base
class. Both the grammatical structure and the actions associated with the grammar may be
atered independently.

Rule Definitions

Because ANTLR considers lexical analysis to be parsing on a character stream, both lexer
and parser rules may be discussed simultaneously. When speaking generically about rules,
we will use the term atom to mean an element from the input stream (be they characters or
tokens).

The structure of an input stream of atoms is specified by a set of mutually-referential rules.
Each rule has aname, optionally a set of arguments, optionally a"throws" clause, optionally
an init-action, optionally areturn value, and an alternative or aternatives. Each alternative
contains a series of elements that specify what to match and where.

The basic form of an ANTLR ruleis:

rul ename
alternative_1
| alternative_ 2

| alternative_n
If parameters are required for the rule, use the following form:
rul enane[formal paranmeters] : ... ;

If you want to return avaue from the rule, usether et ur ns keyword:
rul enane returns [type id, type id...] : ... ;
wheret ype isatype specifier of the generated language, and id isavalid identifier of the

generated language. In Java, asingle type identifier would suffice most of the time, but
returning an array of strings, for example, would require brackets:

ids returns [String[] s]: (ID{...})* ;

http://www.antlr.org/doc/metalang.html (7 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language
Also, when generating C or C++, the return type could be complex such as:
ids returns [char *[] s]: ... ;

Theidsof ther et ur ns statement will be passed to the output code. An action may assign
directly to these idsto affect the return values.

To specify that your parser (or tree parser rule) can throw anon-ANTLR specific exception,
use the exceptions clause. For example, hereisasimple parser specification with arule that
throws MyExcept i on:

cl ass P extends Parser;

a throws MyException
. A

ANTLR generates the following for rule a

public final void a()
t hrows Recogni ti onExcepti on,
TokenSt r eanExcepti on,

MyExcepti on
{
try {
mat ch(A) ;
}
catch (RecognitionException ex) {
reportError(ex);
consume() ;
consuneuntil (_tokenSet 0);
}
}

Lexer rules may not specify exceptions as of ANTLR 2.7.1.

Init-actions are specified before the colon. Init-actions differ from normal actions because
they are always executed regardless of guess mode. In addition, they are suitable for
variable declarations in languages like C where al declarations must be at the start of the
rule.

rul e

{
}

init-action

L exer rules. Rules defined within alexer grammar must have a name beginning with an
uppercase letter. These rulesimplicitly match characters on the input stream instead of
tokens on the token stream. Referenced grammar elements include token references
(implicit lexer rule references), characters, and strings. Lexer rules are processed in the
exact same manner as parser rules and, hence, may specify arguments and return values,
further, lexer rules can aso have local variables and use recursion. See more about lexical

analysiswith ANTLR.

http://www.antlr.org/doc/metalang.html (8 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

Par ser rules. Parser rules apply structure to a stream of tokens whereas lexer rules apply
structure to a stream of characters. Parser rules, therefore, must not reference character
literals. Double-quoted strings in parser rules are considered token references and force
ANTLR to squirrel away the string literal into atable that can be checked by actionsin the
associated lexer.

All parser rules must begin with lowercase |etters.

Tree-parser rules. In atree-parser, an additional special syntax is allowed to specify the
match of atwo-dimensional structure. Whereas a parser rule may look like:

rule : A B C

which means "match A B and C sequentially", atree-parser rule may also use the syntax:
rule : # A B O;

which means "match a node of type A, and then descend into itslist of children and match B
and C". This notation can be nested arbitrarily, using #(...) anywhere an EBNF construct
could be used, for example:

rule : #(A B #CD (B)*));
Atomic Production elements

Character literal. A character literal can only be referred to within alexer rule. The single
character is matched on the character input stream. There are no need to escape regular
expression meta symbols because regular expressions are not used to match lexical atoms.
For example, ' {' need not have an escape as you are specifying the literal character to
match. Meta symbols are used outside of characters and string literals to specify lexical
structure.

String literal. Referring to a string literal within a parser rule defines atoken type for the
string literal, and causes the string literal to be placed in a hash table of the associated lexer.
The associated lexer must check the hash table in an action. References to string literals
within the parser may be suffixed with an element option; see token references below.

Referring to a string within a lexer rule matches the indicated sequence of charactersand is
a shorthand notation. For example, consider the following lexer rule definition:

BEG N : "begin" ;
Thisrule can be rewritten in afunctionally equivalent manner:
BEAN: '"b" 'e 'g 'i' 'n" ;

There are no need to escape regular expression meta symbols because regular expressions
are not used to match charactersin the lexer.

Token reference. Referencing atoken in aparser rule implies that you want to recognize a
token with the specified token type. This does not actually call the associated lexer rule--the
lexical analysis phase delivers a stream of tokensto the parser.

A token reference within alexer rule implies a method call to that rule, and carries the same
analysis semantics as arule reference within a parser. In this situation, you may specify rule
arguments and return values. See the next section on rule references.

http://www.antlr.org/doc/metalang.html (9 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

Y ou may also specify an option on atoken reference. Currently, you can only specify the
AST node typeto create from the token. For example, the following rule instructs ANTLR
to build INTNode objects from the INT reference:

I : | NT<AST=I NTNode> ;

The syntax of an element option is
<option=val ue; option=value; ...>

Wildcard. The". " wildcard within a parser rule matches any single token; within a lexer
rule it matches any single character. For example, this matches any two tokens between the
B and C:

r . AB. . C

Simple Production elements

Rulereference. Referencing arule implies amethod call to that rule at that point in the
parse. Y ou may pass parameters and obtain return values. For example, formal and actual
parameters are specified within square brackets:

f uncdef
type ID "(" args ")" bl ock][1]

bl oci<[i nt scope]
; “{" ... {/*use arg scope/*} "}"

Return values that are stored into variables use a simple assignment notation:

set
{ Vector ids=null; } // init-action
"(" ids=idList ")"

I dLi st returns [Vector strs]
{ strs = new Vector(); } /1l init-action
1d: 1D
{ strs.appendEl enent (id.getText()); }
(
","i1d2: 1D
{ strs.appendEl enent (i d2. get Text()); }
) *
Semantic action. Actions are blocks of source code (expressed in the target language)
enclosed in curly braces. The code is executed after the preceding production element has
been recognized and before the recognition of the following element. Actions are typically
used to generate output, construct trees, or modify a symbol table. An action's position
dictateswhen it is recognized relative to the surrounding grammar elements.

If the action isthe first element of a production, it is executed before any other element in
that production, but only if that production is predicted by the lookahead.

Thefirst action of an EBNF subrule may be followed by ":'. Doing so designates the action
as an init-action and associates it with the subrule as awhole, instead of any production. It is

http://www.antlr.org/doc/metalang.html (10 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

executed immediately upon entering the subrule -- before lookahead prediction for the
alternates of the subrule -- and is executed even while guessing (testing syntactic
predicates). For example:
({init-action}:

{action of 1st production} production_1
| {action of 2nd production} production_2
)?

The init-action would be executed regardless of what (if anything) matched in the optional
subrule.

Production Element Operators

Element complement. The "~" not unary operator must be applied to an atomic element
such as atoken identifier. For some token atom T, ~T matches any token other than T
except end-of-file. Within lexer rules, ~' a' matches any character other than character
"a' . Thesequence~. ("not anything") is meaningless and not allowed.

The vocabulary space is very important for this operator. In parsers, the complete list of
token typesis known to ANTLR and, hence, ANTLR simply clones that set and clears the
indicated element. For characters, you must specify the character vocabulary; the only other
choiceisto add elements 0..255 and clear the indicated character. For Unicode,
complementing a character would mean creating a set with 216 elements unless the
programmer specified the vocabulary. The character vocabulary includes the characters
specified in the char Vocabul ar y option and any characters referenced in the lexer rules.
Hereis a sample use of the character vocabulary option:

class L extends Lexer;
options { charVocabulary = "\1".."\377"; }

D@t : '0..'9;
SL_COMMENT : "//" (~"'\n")* "\n";

Set complement. the not operator can also be used to construct atoken set or character set
by complementing another set. Thisis most useful when you want to match tokens or
characters until a certain delimiter set is encountered. Rather than invent a special syntax for
such sets, ANTLR alows the placement of ~ in front of a subrule containing only smple
elements and no actions. In this specific case, ANTLR will not generate a subrule, and will
instead create a set-match. The simple elements may be token references, token ranges,
character literals, or character ranges. For example:

cl ass P extends Parser;
ro. T1 (~(T1|T2|T3))* (T1| T2|TI);

class L extends Lexer;
SL_COMMVENT : "//" (~('\n"|["\r'))* ("\n"|'"\r);

STRING : """ (ESC | ~("\\"|"""))* '"";
protected ESC : "\\'" ('n" | "r");

Range oper ator. The range binary operator implies arange of atoms may be matched. The
expression' c1'..' c2' inalexer matches charactersinclusively in that range. The
expression T. . Uin aparser matches any token whose token typeisinclusively in that

http://www.antlr.org/doc/metalang.html (11 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language
range, which is of dubious value unless the token types are generated externally.

AST root operator. When generating abstract syntax trees (ASTS), token references
suffixed with the """ root operator force AST nodes to be created and added as the root of
the current tree. This symbol is only effective when the buildAST option is set. More

information about ASTsisaso available.

AST exclude operator. When generating abstract syntax trees, token references suffixed
withthe"! " exclude operator are not included in the AST constructed for that rule. Rule
references can also be suffixed with the exclude operator, which implies that, while the tree
for the referenced rule is constructed, it is not linked into the tree for the referencing rule.
This symbol isonly effective when the buildAST option is set. More information about

ASTsisdso available.

Token Classes

By using arange operator, a not operator, or a subrule with purely atomic elements, you
implicitly define an "anonymous' token or character class--a set that is very efficient in time
and space. ANTLR will soon let you define explicit or labeled token/character classes. For
example, you can define alexer rule such as:

OPS : (PLUS | MNUS | MLT | DV ;

or

W (" "|'\n]\t

These describe sets of tokens and characters respectively that are easily optimized to simple,
single, bit-set rather than series of token and character comparisons.

Predicates

Semantic predicate. Semantics predicates are conditions that must be met at parse-time
before parsing can continue past them. The functionality of semantic predicatesis explained

in more detail later. The syntax of a semantic predicate is a semantic action suffixed by a
guestion operator:

{ expression }?

The expression must not have side-effects and must evaluate to true or false (bool ean in
Java, i nt inC, or bool in C++). Since semantic predicates can be executed while
guessing, they should not rely upon the results of actions or rule parameters.

Syntactic predicate. Syntactic predicates specify the lookahead language needed to predict
an aternative. Syntactic predicates are explained in more detail later. The syntax of a

syntactic predicate is a subrule with a=> operator suffix:

(1 ookahead-1| anguage) => production

Where the |lookahead-language can be any valid ANTLR construct including references to
other rules. Actions are not executed, however, during the evaluation of a syntactic
predicate.

http://www.antlr.org/doc/metalang.html (12 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language
Element Labels

Any atomic or rule reference production element can be labeled with an identifier (case not
significant). In the case of alabeled atomic element, the identifier is used within a semantic
action to access the associated Token object or character. For example,
assign
: v:ID"=" expr ";"
{ Systemout. println(
"assign to "+v.getText()); }

No "$" operator is needed to reference the label from within an action as was the case with
ANTLR 1.xx.

The AST node constructed for atoken reference or rule reference may be accessed from
within actionsas| abel _AST.

L abels on token references can also be used in association with parser exception handlersto
specify what happens when that token cannot be matched.

Labels on rule references are used for parser exception handling so that any exceptions
generated while executing the labeled rule can be caught.

EBNF Rule Elements

ANTLR supports extended BNF notation according to the following four subrule syntax /
syntax diagrams:

(PL| P2| ... | Pn)

——» 7 +

(PL| P2| ... | Pn)?

—T™ F1 F —

http://www.antlr.org/doc/metalang.html (13 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language
(PL| P2 | ... | Pn)*

—w

(PL] P2| ... | Pn)+

— T o 7 -

—w i

Interpretation Of Semantic Actions

Semantic actions are copied to the appropriate position in the output parser verbatim with
the exception of AST action trangation.

None of the $-variable notation from ANTLR 1.xx carries forward into ANTLR 2.00.

Semantic Predicates

A semantic predicate specifies a condition that must be met (at run-time) before parsing may
proceed. We differentiate between two types of semantic predicates: (i) validating
predicates that throw exceptionsif their conditions are not met while parsing a production
and (ii) disambiguating predicates that are hoisted into the prediction expression for the
associated production.

Semantic predicates are syntactically semantic actions suffixed with a question mark
operator:

{ semantic-predi cate-expression }?

The expression may use any symbol provided by the programmer or generated by ANTLR
that isvisible at the point in the output the expression appears.

The position of a predicate within a production determines which type of predicateit is. For

http://www.antlr.org/doc/metalang.html (14 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

example, consider the following validating predicate (which appear at any non-left-edge
position) that ensures an identifier is semantically atype name:

decl: "var" ID":" t:ID
{ isTypeNanme(t.getText()) }?

Validating predicates generate parser exceptions when they fail. The thrown exceptionisis
of type SemanticException. Y ou can catch this and other parser exceptionsin an exception

handler.

Disambiguating predicates are always the first element in a production because they cannot
be hoisted over actions, token, or rule references. For example, the first production of the
following rule has a disambiguating predicate that would be hoisted into the prediction
expression for the first alternative:

stat: /1l declaration "type varNane;"
{i sTypeNarme(LT(1))}? IDID";"
| ID "=" expr ";" /'l assi gnment

If we restrict this grammar to LL (1), it is syntactically nondeterministic because of the
common left-prefix: | D. However, the semantic predicate correctly provides additional
information that disambiguates the parsing decision. The parsing logic would be:
if (LA(1l)==ID && i sTypeNane(LT(1))) {

mat ch producti on one
}

else if (LA(1)==ID) {
mat ch production one
}

el se error

ANTLR provides a guarded predicate to allow you to specify the lookahead context under
which a predicate should be evaluated. The syntax is:

(1 ookahead- cont ext -for-predi cate)=>{predi cate}?

A guarded predicate is useful in situations where the semantic predicate should be hoisted
into the prediction decision only when the lookahead is consistent with some context. For
example:
a : (I'D)=>{isType(LT(21))}? (I1D]INT)

| | D

Here, the predicate is only applicable when an | Disfound on the input stream. It should not
be evaluated when an | NT isfound.

Formally, in ANTLR 1.xx, semantic predicates represented the semantic context of a
production. As such, the semantic AND syntactic context (lookahead) could be hoisted into
other rules. In the public-domain version of ANTLR 2.00, predicates are not currently be
hoisted outside of their enclosing rule. Consequently, rules such as:

type : {isType(t)}? ID;

http://www.antlr.org/doc/metalang.html (15 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

are meaningless. On the other hand, this "semantic context" feature caused considerable
confusion to many ANTLR 1.xx folks.

Syntactic Predicates

There are occasionally parsing decisions that cannot be rendered deterministic with finite
lookahead. For example:
a : (A)+ B
| (A)+C
The common left-prefix renders these two productions nondeterministic in the LL (k) sense
for any value of k. Clearly, these two productions can be | eft-factored into:
a (A)+ (B O
without changing the recognized language. However, when actions are embedded in

grammars, left-factoring is not always possible. Further, left-factoring and other
grammatical manipulations do not result in natural (readable) grammars.

The solution is simply to use arbitrary lookahead in the few cases where finite LL(K) for k>1
isinsufficient. ANTLR allows you to specify alookahead language with possibly infinite
strings using the following syntax:

(prediction block) => production

For example, consider the following rule that distinguishes between sets (comma-separated
lists of words) and parallel assignments (one list assigned to another):
stat: (list "=")=>1list "=" |ist

| | i st

If al i st followed by an assignment operator is found on the input stream, the first
production is predicted. If not, the second aternative production is attempted.

Syntactic predicates are aform of selective backtracking and, therefore, actions are turned
off while evaluating a syntactic predicate so that actions do not have to be undone.

Syntactic predicates are implemented using exceptions in the target language if they exist.
When generating C code, | ongj np would have to be used.

We could have chosen to simply use arbitrary lookahead for any non-LL (k) decision found
in agrammar. However, making the arbitrary lookahead explicit in the grammar is useful
because you don't have to guess what the parser will be doing. Most importantly, there are
language constructs that are ambiguous for which there exists no deterministic grammar!
For example, the infamous if-then-else construct has no LL (k) grammar for any k. The
following grammar is ambiguous and, hence, nondeterministic:

Stat: "if" expr "then" stat ("else" stat)?

Given a choice between two productions in a nondeterministic decision, we simply choose

http://www.antlr.org/doc/metalang.html (16 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

the first one. Thisworks out well is most situations. Forcing this decision to use arbitrary
lookahead would simply slow the parse down.

Fixed depth lookahead and syntactic predicates

ANTLR cannot be sure what lookahead can follow a syntactic predicate (the only logical
possibility is whatever follows the aternative predicted by the predicate, but erroneous input
and so on complicates this), hence, ANTLR assumes anything can follow. Thissituationis
similar to the computation of lexical lookahead when it hits the end of the token rule
definition.

Consider apredicate with a(...)* whose implicit exit branch forces a computation attempt on
what follows the loop, which is the end of the syntactic predicate in this case.

cl ass parse extends Parser;
a ; (A(P)*) => A (P)*
| A
The lookahead is artificially set to "any token" for the exit branch. Normally, the P and the

"any token" would conflict, but ANTLR knows that what you mean is to match a bunch of P
tokensif they are present--no warning is generated.

If more than one path can lead to the end of the predicate in any one decision, ANTLR will
generate awarning. The following rule resultsin two warnings.

cl ass parse extends Parser;
a : (A(PI)*) == A(P)*
| A
The empty alternative can indirectly be the start of the loop and, hence, conflicts with the P.

Further, ANTLR detects the problem that two paths reach end of predicate. The resulting
parser will compile but never terminate the (P|)* loop.

The situation is complicated by k>1 lookahead. When the nth lookahead depth reaches the
end of the predicate, it records the fact and then code generation ignores the lookahead for

that depth.
cl ass parse extends Parser;
options {
k=2:
}
a : (A(PBP)*) ==A(P*

| A
ANTLR generates a decision of the following form inside the (..)* of the predicate:
if ((la_1==P) && (la_2==B)) {

mat ch(P) ;
mat ch(B) ;

}

else if ((la_1==P) && (true)) {
mat ch(P) ;

http://www.antlr.org/doc/metalang.html (17 of 18) [8/10/2001 10:45:34 AM]

ANTLR Specification: Meta Language

}
el se {

break _| oop4;
}

This computation works in all grammar types.

ANTLR 2.x.x Meta-Language Grammar

Seeant | r/ ant !l r. g for the grammar that describes ANTLR 2.x.x input grammar syntax
in ANTLR 2.x.x meta-language itself.

Version: $Id: //depot/code/org.antlr/test/antlr-2.7.0al1l/doc/metalang.html#3 $

http://www.antlr.org/doc/metalang.html (18 of 18) [8/10/2001 10:45:34 AM]

Lexical Analysis with ANTLR

Lexical Analysis with ANTLR

A lexer (often called a scanner) breaks up an input stream of characters into vocabulary
v symbols for a parser, which applies a grammatical structure to that symbol stream. Because
9 ; ANTLR employs the same recognition mechanism for lexing, parsing, and tree parsing,
JGLI'I"LI ANTLR-generated lexers are much stronger than DFA-based lexers such as those generated

by DLG (from PCCTS 1.33) and lex.
ANTLR

_ Theincrease in lexing power comes at the cost of some inconvenience in lexer specification
1Guru and indeed requires a serious shift your thoughts about lexical analysis. See a comparison of
LL (k) and DFA-based lexica analysis.

ANTLR generates predicated-L L (k) lexers, which means that you can have semantic and
syntactic predicates and use k>1 lookahead. The other advantages are:

« You can actually read and debug the output asits very similar to what you would
build by hand.

« Thesyntax for specifying lexical structure isthe same for lexers, parsers, and tree
parsers.

« You can have actions executed during the recognition of a single token.

« You can recognize complicated tokens such as HTML tags or "executable" comments
like the javadoc @tagsinside/ ** ... */ comments. The lexer has astack, unlike a

DFA, so you can match nested structures such as nested comments.

The overall structure of alexer is:
cl ass MyLexer extends Lexer;

options {

sonme options
}
{

| exer cl ass nenbers

}

| exi cal rules

Lexical Rules

Rules defined within a lexer grammar must have a name beginning with an uppercase letter.
These rulesimplicitly match characters on the input stream instead of tokens on the token
stream. Referenced grammar el ements include token references (implicit lexer rule
references), characters, and strings. Lexer rules are processed in the exact same manner as
parser rules and, hence, may specify arguments and return values; further, lexer rules can
also have local variables and use recursion. The following rule defines arule called | D that
Is available as atoken type in the parser.

ID: ('a.."z")+

This rule would become part of the resulting lexer and would appear as a method called
mD().

Lexer rules allow your parser to match context-free structures on the input character stream

http://www.antlr.org/doc/lexer.html (1 of 29) [8/10/2001 10:45:51 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

Lexical Analysis with ANTLR

as opposed to the much weaker regular structures (using a DFA--deterministic finite
automaton). For example, consider that matching nested curly braces with a DFA must be
done using a counter whereas nested curlies are trivially matched with a context-free
grammar:

ACTI ON
U (ACTION| ~'})* 'Y
Therecursion, of course, is the dead giveaway that thisis not an ordinary lexer rule.

Because the same algorithms are used to analyze lexer and parser rules, lexer rules may use
more than a single symbol of lookahead, can use semantic predicates, and can specify
syntactic predicates to look arbitrarily ahead, thus, providing recognition capabilities beyond
the LL(K) languages into the context-sensitive. Here is a simple example that requires k>1
lookahead:

ESCAPE CHAR
: "\\" '"t'" // two char of | ookahead needed,
| ‘\\'" 'n" // due to comon left-prefix

To illustrate the use of syntactic predicates for lexer rules, consider the problem of
distinguishing between floating point numbers and ranges in Pascal. Input 3. . 4 must be
broken up into 3 tokens: | NT, RANGE, followed by | NT. Input 3. 4, on the other hand,
must be sent to the parser as a REAL. The trouble is that the series of digits before the first
. ' canbearbitrarily long. The scanner then must consumethefirst' . ' to seeif the next
characterisa’' . ' , which would imply that it must back up and consider the first series of
digits an integer. Using a non-backtracking lexer makes this task essentially impossible.
However, a syntactic predicate can be used to specify what arbitrary lookahead is necessary:

cl ass Pascal ;

pr og: | NT
(RANGE | NT
{ Systemout.printIn("INT .. INT"); }
| EOF

{ Systemout.println("plain old INT"); }

)
| REAL { Systemout.println("token REAL"); }

| excl ass LexPascal ;
W6 ("
| "\t
| “\n'
AU
{ $set Type(Token. SKIP); }

prot ect ed
| NT : ("0".."9)+

http://www.antlr.org/doc/lexer.html (2 of 29) [8/10/2001 10:45:51 AM]

Lexical Analysis with ANTLR

pr ot ect ed

REAL.: INT '"." I NT

RANGE

RANGE_OR | NT
: (INT "..") =>INT { $setType(INT); }
| (INT '".") => REAL { $setType(REAL); }
| | NT { $set Type(INT); }

ANTLR lexer rules are even able to handle FORTRAN assignments and other difficult
lexical constructs. Consider the following DOloop:

DO 100 I = 1,10

If the comma were replaced with a period, the loop would become an assignment to aweird
variable called "DOL0OI ":

DO 100 I = 1.10

The following rules correctly differentiate the two cases:

DO _OR_VAR
: (DO _HEADER) => "DO' { $set Type(DO); }
| VARI ABLE { $set Type(VARI ABLE); }

protected
DO _HEADER
options { ignore=W5;, }
: "DO" INT VARI ABLE '=" EXPR ',

protected INT : ('0".."9")+
protected Ws : ' ';

prot ected

VARI ABLE
: ‘AL Z

("A.."Z | " "] "0 9)

{ I* strip space fromend */ }

[l just an int or float
protected EXPR
: INT (*." (INT)?)?

http://www.antlr.org/doc/lexer.html (3 of 29) [8/10/2001 10:45:51 AM]

Lexical Analysis with ANTLR
Return values

All rules return atoken object (conceptually) automatically, which contains the text matched
for the rule and itstoken type at least. To specify a user-defined return value, define a
return value and set it in an action:

prot ected
INT returns [int V]

; (‘0"..79")+ { v=Integer.val ueX ($get Text); }
Non-protected rules cannot have areturn type as the parser cannot access the return value
leading to confusion.

Skipping characters

To have the characters matched by arule ignored, set the token typeto Token. SKI P. For
example,
W : (" "] "\t" | '\n" { neMine(); } | "\r")+

{ $set Type(Token. SKIP); }

Distinguishing between lexer rules

ANTLR generates arule caled next Token which has an alternative containing a lexer
rule reference, one alternative for each non-pr ot ect ed lexer rule. Thefirst few characters

of the token are used to route the lexer to the appropriate lexical rule. The alternatives of
nextToken are analyzed for determinism; i.e., with k characters of lookahead can the lexer
determine which lexer rule to attempt.

The ANTLR input:
INT : ("0".."9")+
170" 7 R W A R W Y I W ¢ B
produces a switch statement in nextToken:
switch (LA(1)) {
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9':
m NT(); break;
case '\t': case '\n': case '\r': case '
mMAS() ; break;
default: // error

}

Definition order and lexical ambiguities

ANTLR 2.0 does not follow the common lexer rule of "first definition wins' (the
aternatives within arule, however, still follow thisrule). Instead, sufficient power is given
to handle the two most common cases of ambiguity, namely "keywords vs. identifiers', and

http://www.antlr.org/doc/lexer.html (4 of 29) [8/10/2001 10:45:51 AM]

Lexical Analysis with ANTLR
"common prefixes'; and for especially nasty cases you can use syntactic predicates.

Keywords and literals

Many languages have agenera "identifier" lexical rule, and keywords that are special cases
of the identifier pattern. A typical identifier token is defined as:

ID: LETTER (LETTER | DIGT)*,

Thisis often in conflict with keywords. ANTLR 2.0 solves this problem by letting you put
fixed keywords into aliterals table. The literals table (which is usally implemented as a hash
tablein the lexer) is checked after each token is matched, so that the literals effectively
override the more general identifier pattern. Literals are created in one of two ways. First,
any double-quoted string used in a parser is automatically entered into the literals table of
the associated lexer. Second, literals may be specified in the lexer grammar by means of the
literal option. In addition, the testLiterals option gives you fine-grained control over the

generation of literal-testing code.

Common prefixes

Fixed-length common prefixesin lexer rules are best handled by increasing the |ookahead
depth of the lexer. For example, some operators from Java:

cl ass MyLexer extends Lexer;
options {
k=4,
}
Gr : ">":
GE : ">=";
RSHI FT : ">>":
RSHI FT_ASSI GN : ">>=";
UNSI GNED RSHI FT @ ">>>";
UNSI GNED RSHI FT_ASSI GN : ">>>=";

Token definition files

Token definitions can be transferred from one grammar to another by way of token
definition files. Thisis accomplished using the importV ocab and exportV ocab options.

Character classes

Use the ~ operator to invert a character or set of characters. For example, to match any
character other than newline, the following rule references ~\n'.

SL_COWMENT: "//" (~"\n")* "\n';

The ~ operator also inverts a character set:

NOT_Ws: ~(' " | "\t" | "\n" | "\r");

The range operator can be used to create sequential character sets:

DAT: '0.."9 ;

Token Attributes

http://www.antlr.org/doc/lexer.html (5 of 29) [8/10/2001 10:45:51 AM]

Lexical Analysis with ANTLR

See the next section.
Lexical lookahead and the end-of-token symbol

A unigue situation occurs when analyzing lexical grammars, one which is similar to the
end-of-file condition when analyzing regular grammars. Consider how you would compute
lookahead sets for the ('b' |) subrule in following rule B:

cl ass L extends Lexer;

A : B 'b'

| ed fromanother lex rule
B : "X b' |)

protected // only cal
(I

The lookahead for the first alternative of the subruleisclearly 'b'. The second alternativeis
empty and the lookahead set isthe set of all characters that can follow references to the
subrule, which isthe follow set for rule B. In this case, the'b' character follows the
reference to B and is therefore the lookahead set for the empty alt indirectly. Because 'b'
begins both aternatives, the parsing decision for the subrule is nondeterminism or
ambiguous as we sometimes say. ANTLR will justly generate awarning for this subrule
(unless you use thewar nWhenFol | owAnbi g option).

Now, consider what would make sense for the lookahead if rule A did not exist and rule B
was not protected (it was a complete token rather than a " subtoken™):
B : X' ('"b" |)

In this case, the empty alternative finds only the end of the rule as the lookahead with no
other rulesreferencing it. Inthe worst case, any character could follow thisrule (i.e., start
the next token or error sequence). So, should not the lookahead for the empty aternative be
the entire character vocabulary? And should not this result in a nondeterminism warning as
it must conflict with the'b’" alternative? Conceptually, yesto both questions. From a
practical standpoint, however, you are clearly saying "heh, match a'b' on the end of token B
If you find one." | argue that no warning should be generated and ANTLR's policy of
matching elements as soon as possible makes sense here as well.

Another reason not to represent the lookahead as the entire vocabulary is that a vocabulary
of \u0000'..\uFFFF isredlly big (one set is 216 / 32 long words of memory!). Any
aternative with '<end-of-token>' in its lookahead set will be pushed to the EL SE or
DEFAULT clause by the code generator so that huge bitsets can be avoided.

The summary is that lookahead purely derived from hitting the end of alexical rule
(unreferenced by other rules) cannot be the cause of a nondeterminism. The following table
summarizes a bunch of cases that will help you figure out when ANTLR will complain and
when it will not.

http://www.antlr.org/doc/lexer.html (6 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

X

(ta")? ("a')?

Thefirst subruleis
nondeterministic as
'a from second
subrule (and
end-of-token) arein
the lookahead for
exit branch of (...)?

(Ca)? (‘¢)?

No nondeterminism.

pr ot ect ed
X :
|

Ibl

Nondeterminism in
rule X.

No nondeterminism
as exit branch of
loops see |ookahead
computed purely
from end-of-token.

(ta')+ ("a')?

Nondeterminism
between 'a of (...)+
and exit branch as
the exit can see the
‘a’ of the optional
subrule. Thiswould
be a problem even if
(‘a)?weresimply 'a.
A (...)* loop would
report the same
problem.

At k=1, thisisa
nondeterminism for
the(...)?since'a
predicts staying in
and exiting the loop.
At k=2, no
nondeterminism.

Here, thereisan
empty alternative
inside an optional
subrule. A
nondeterminism is
reported as two paths
predict end-of-token.

Y ou might be wondering why the first subrule below is ambiguous:

(‘a'")? ("a')”?

http://www.antlr.org/doc/lexer.html (7 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

The answer is that the NFA to DFA conversion would result in a DFA with the 'a transitions
merged into asingle state transition! Thisis ok for aDFA where you cannot have actions
anywhere except after a complete match. Remember that ANTLR lets you do the following:

("a' {do-this})? ('a {do-that})?

One other thing isimportant to know. Recall that alternativesin lexical rules are reordered
according to their lookahead requirements, from highest to lowest.
A : "a'

| a' ‘b’
At k=2, ANTLR can see'd followed by '<end-of-token>' for the first alternative and 'a
followed by 'b' in the second. The lookahead at depth 2 for the first alternative being
‘<end-of-token>' suppressing a warning that depth two can match any character for the first

aternative. To behave naturally and to generate good code when no warning is generated,
ANTLR reorders the alternatives so that the code generated is similar to:

A() {
if (LA(l)=="a" && LA(2)=="Db") { /] alt 2
match('a'); match('b');
}
elseif (LA(l)=="a") { /] alt 1
mat ch(' a')
}
el se {error;}
}

Note the lack of lookahead test for depth 2 for alternative 1. When an empty alternativeis
present, ANTLR movesit to the end. For example,
A : "a'

|

| a' b

resultsin code like this:

A() A
if (LA(l)=="a" && LA(2)=="Db") { /] alt 2
match('a'); match('b');
}
elseif (LA(l)=="a") { /] alt 1
mat ch(' a')
}
el se {
}
}

Note that there is no way for alexing error to occur here (which makes sense because the
rule is optional--though this rule only makes sense when pr ot ect ed).

Semantic predicates get moved along with their associated aternatives when the alternatives
are sorted by lookahead depth. It would be weird if the addition of a{true} ? predicate

http://www.antlr.org/doc/lexer.html (8 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

(which implicitly exists for each alternative) changed what the lexer recognized! The

following ruleisreorder so that alternative 2 is tested for first.
B ; {true}? 'a'
| 1 al 1 bl

Syntactic predicates are not reordered. Mentioning the predicate after the rule it conflicts

with results in an ambiguity such asisin thisrule:
F) ‘c'
| (I CI):> 1 Cl

Other alternatives are, however, reordered with respect to the syntactic predicates even
when a switch is generated for the LL (1) components and the syntactic predicates are

pushed the default case. The following ruleillustrates the point.
F : "b'

| {/* enmpty-path */}
| (‘c)=> "¢

| o

|

|

1 dl
e

Rule F's decision is generated as follows:
switch (la_1) {

case 'b':

{
mat ch(' b');
br eak;

}

case 'd':

{
match(' d');
br eak;

}

case 'e':

{
match('e');
br eak;

}

def aul t:

bool ean synPredMat ched15 = fal se;
if (((la_1=="¢c"))) {

int m5 = mark();

synPredMat chedl1l5 = true;

guessi ng++;

try {

match('c');
}

catch (Recogniti onException pe)

http://www.antlr.org/doc/lexer.html (9 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

synPredMat chedl1l5 = fal se;

}
rew nd(_ni5);
guessi ng- -;

}

if (synPredMatchedl5) {
match('c');

}

else if ((la_1=="¢")) {
match('c');

}

el se {
if (guessing==0) {

/* enpty-path */

}

}

}
Notice how the empty path got moved after the test for the 'c' alternative.

Scanning Binary Files

[Prior to 2.2.3, ANTLR was unable to parse binary files.] Character literals are not limited
to printable ASCII characters. To demonstrate the concept, imagine that you want to parse a
binary file that contains strings and short integers. To distinguish between them, marker
bytes are used according to the following format:

| format | description
0" highbyte lowbyte | Short integer
'\1' string of non-\2' chars '\2 | String

Sampleinput (274 followed by "atest") might look like the following in hex (output from
UNIX od -h command):

0000000000 00 01 12 01 61 20 74 65 73 74 02

or as viewed as characters:
0000000000 \0 001 022 001 a t e s t 002

The parser istrivialy just a(...)+ around the two types of input tokens:
cl ass Dat aPar ser extends Parser;

file: (sh: SHORT
{Systemout.println(sh.getText());}
| st: STRI NG
{Systemout.println("\""+
st.getText()+"\"");}
) +

All of the interesting stuff happensin the lexer. First, define the class and set the vocabulary
to be all 8 bit binary values:

http://www.antlr.org/doc/lexer.html (10 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR
cl ass Dat aLexer extends Lexer;
options {
char Vocabul ary = "\u0000'.."'\ uOOFF ;
}

Then, define the two tokens according to the specifications, with markers around the string
and a single marker byte in front of the short:

SHORT
: /1 match the marker followed by any 2 bytes
‘\0" high:. lo:.
{
/'l pack the bytes into a two-byte short
int v = (((int)high)<<8) + |o;
/1 make a string out of the val ue
$set Text (""+v);
}
STRI NG
; "\1' ! /1 begin string (discard)
(~"\2")~
"\ 2" /'l end string (discard)

To invoke the parser, use something like the following:
i mport java.io.*;

class Main {
public static void main(String[] args) {
try {
/'l use Datal nputStreamto grab bytes
Dat aLexer | exer =
new Dat aLexer (
new Dat al nput St reanm(System i n)
);
Dat aPar ser parser =
new Dat aPar ser (| exer);
parser.file();
} catch(Exception e) {
Systemerr.println("exception: "+e);
}

}

Scanning Unicode Characters

ANTLR (as of 2.7.1) allows you to recognize input composed of Unicode characters; that is,
you are not restricted to 8 bit ASCII characters. | would like to emphasize that ANTLR

allows, but does yet not support Unicode as there is more work to be done. For example,
end-of-fileis currently incorrectly specified:

http://www.antlr.org/doc/lexer.html (11 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

Char Scanner . EOF_CHAR=(char) - 1;

This must be an integer -1 not char, which is actually narrowed to OXFFFF viathe cast. |
have to go throught the entire code base looking for these problems. Plus, we should really
have a special syntax to mean "javaidentifier character" and some standard encodings for
non-Western character sets etc...

Another problem isthat ANTLR generates bit sets when afew range checks would work.
This makes for some big output files (all data), but at least the Java compilers will compile
the output now (previously giant switch expressions would prevent compilation).

Thefollowing is avery simple example of how to match a series of space-separated
identifiers.
class L extends Lexer;

options {

/1 Allow any char but \uFFFF (16 bit -1)
char Vocabul ary="\u0000' . . '\ uFFFE';

}
{
private static bool ean done = fal se;
public void uponEOF()
t hrows TokenStreanException, Char StreanException
{
done=tr ue;
}
public static void main(String[] args) throws Exception {
L I exer = new L(Systemin);
while (!done) {
Token t = | exer. next Token();
Systemout.println("Token: "+t);
}
}
}
| D | D_START_LETTER (I D _LETTER)*
W5 (" "|'\n") {$set Type(Token. SKIP);}
pr ot ect ed
| D_START_LETTER
. I$I
—

|
| ta'..
| "\u0080".."\ufffe’

http://www.antlr.org/doc/lexer.html (12 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

prot ect ed

| D LETTER
: | D_START_LETTER
| ‘0.9

A final note on Unicode. The ~x "not" operator includes everything in your specified
vocabulary (up to 16 bit character space) except X. For example,

~("$'|'a .."z")

results in every unicode character except '$ and lowercase latin-1 letters, assuming your
charVocabulary is0..FFFF.

Manipulating Token Text and Objects

Once you have specified what to match in alexical rule, you may ask "what can | discover
about what will be matched for each rule element?' ANTLR allowsyou to label the various
elements and, at parse-time, access the text matched for the element. Y ou can even specify
the token object to return from the rule and, hence, from the lexer to the parser. This section
describes the text and token object handling characteristics of ANTLR.

Manipulating the Text of a Lexical Rule

There are times when you want to ook at the text matched for the current rule, alter it, or set
the text of arule to anew string. The most common case is when you want to simply
discard the text associated with afew of the elements that are matched for arule such as
guotes.

ANTLR provides the'!" operator that |ets you indicate certain elements should not contribute
to the text for atoken being recognized. The'!" operator is used just like when building trees
in the parser. For example, if you are matching the HTML tags and you do not want the '<'
and >' characters returned as part of the token text, you could manually remove them from
the token's text before they are returned, but a better way is to suffix the unwanted
characters with '!". For example, the
 tag might be recognized as follows:

BR : '<'I "pr" ">1 : /] discard < and >

Suffixing alexical rule reference with " forces the text matched by the invoked rule to be
discarded (it will not appear in the text for the invoking rule). For example, if you do not
care about the mantissa of afloating point number, you can suffix the rule that matches it
witha'l"

FLOAT : INT ('.'"!" INT!)? ; // keep only first INT

As a shorthand notation, you may suffix an alternative or rule with '!" to indicate the
aternative or rule should not pass any text back to the invoking rule or parser (if
nonprotected):

[l ' on rule: nothing is auto added to text of rule.
rulel @ ... ;

[/ 1" on alt: nothing is auto added to text for alt
rule @ ... | ...,

http://www.antlr.org/doc/lexer.html (13 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

[Ttem suffixed with "I

| Effect

| char or string literal

|Do not add text for this atom to current rule's text.

rule reference

Do not add text for matched while recognizing thisruleto
current rule's text.

dternative

Nothing that is matched by alternative is added to current
rule's text; the enclosing rule contributes nothing to any
invoking rule'stext. For nonprotected rules, the text for
the token returned to parser is blank.

rule definition

Nothing that is matched by any aternative is added to
current rule's text; the rule contributes nothing to any
invoking rule'stext. For nonprotected rules, the text for

the token returned to parser is blank.

Whilethe " implies that the text is not added to the text for the current rule, you can label
an element to access the text (viathe token if the element isarule reference).

In terms of implementation, the characters are always added to the current text buffer, but
are carved out when necessary (as thiswill be the exception rather than the rule, making the

normal case efficient).

The'l" operator is great for discarding certain characters or groups of characters, but what
about the case where you want to insert characters or totally reset the text for arule or
token? ANTLR provides a series of special methods to do this (we prefix the methods with
'$' because Java does not have a macro facility and ANTLR must recogni ze the special
methods in your actions). The following table summarizes.

| Method

Description/Trandlation

$append(x)

Append x to the text of the surrounding rule. Trandlation:
t ext . append(x)

$set Text (x)

Set the text of the surrounding rule to x. Trandlation:
text.set Lengt h(_begin); text.append(x)

$get Text

Return a String of the text for the surrounding rule.

Trandlation;
new String(text.getBuffer(),

_begin,text.length()-_begin)

$set Token(x)

Set the token object that thisruleisto return. Seethe
section on Token Object Creation. Trandation: _t oken
= X

$set Type(x)

Set the token type of the surrounding rule. Translation:
_ttype = X

set Text (x)

Set the text for the entire token being recognized
regardless of what rule the action isin. No trandlation.

get Text ()

Get the text for the entire token being recognized
regardless of what rule the action isin. No translation.

One of the great things about an ANTLR generated lexer is that the text of atoken can be
modified incrementally as the token is recognized (an impossible task for a DFA-based

lexer):

STRING '"' (ESCAPE |

W))

http://www.antlr.org/doc/lexer.html (14 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

prot ect ed
ESCAPE
: A\

('n" { $setText("\n"); }
| 'r" { $setText("\r"); }
| "t' { $setText("\t"); }
| *"" { $setText("\""); }
)

Token Object Creation

Because lexical rules can call other rulesjust like in the parser, you sometimes want to know
what text was matched for that portion of the token being matched. To support this, ANTLR
allowsyou to label lexical rules and obtain a Token object representing the text, token type,

line number, etc... matched for that rule reference. This ability corresponds to be able to

access the text matched for alexical state in a DFA-based lexer. For example, hereisa

simple rule that prints out the text matched for arule reference, INT.

| NDEX [i INT ']
{Systemout.println(i.getText());}

| NT : ("0 .."9)+ ;

If you moved the labeled reference and action to a parser, it would the same thing (match an
integer and print it out).

All lexical rules conceptually return aToken object, but in practice this would be
inefficient. ANTLR generates methods so that a token object is created only if any invoking
referenceis labeled (indicating they want the token object). Imagine another rule that calls
INT without alabel.

FLOAT INT (".' INT)? ;

In this case, no token object is created for either referenceto INT. You will notice a

boolean argument to every lexical rule that tells it whether or not atoken object should be
created and returned (viaa member variable). All nonprotected rules (those that are
"exposed” to the parser) must always generate tokens, which are passed back to the parser.

Heterogeneous Token Object Streams

While token creation is normally handled automatically, you can also manually specify the
token object to be returned from alexical rule. The advantage is that you can pass
heterogeneous token objects back to the parser, which is extremely useful for parsing
languagues with complicated tokens such as HTML (the <i ng> and <t abl e> tokens, for
example, can have lots of attributes). Hereisarule for the tag that returns a token
object of type ImageToken:

| MAGE

{
Attributes attrs;

}

http://www.antlr.org/doc/lexer.html (15 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

"

{
| mmgeToken t = new | mageToken(| MAGE, $get Text);

t.setAttributes(attrs);
$set Token(t);

}

ATTRI BUTES returns [Attributes a]

The $set Token function specifies that its argument is to be returned when the rule exits.
The parser will receive this specific object instead of aCormonToken or whatever else
you may have specified with the Lexer . set TokenChj ect O ass method. The action
inrulel MAGE references atoken type, | MAGE, and alexical rule references,

ATTRI BUTES, which matches al of the attributes of an image tag and returnsthem in a
datastructurecalled At t ri but es.

What would it mean for rule | MAGE to be protected (i.e., referenced only from other lexical
rules rather than from next Token)? Any invoking labeled rule reference would receive

the object (not the parser) and could examine it, or manipulate it, or passit on to the invoker
of that rule. For example, if | MAGE were called from TAGS rather than being nonprotected,

rule TAGS would have to pass the token object back to the parser for it.

TAGS : | MG | MAGE
{$set Token(ing);} // pass to parser
| PARAGRAPH // probably has no special token

|
Setting the token object for a nonprotected rule invoked without alabel has no effect other
than to waste time creating an object that will not be used.

We useaChar Scanner member _r et ur nToken to do the return in order to not conflict
with return values used by the grammar developer. For example,

PTAG "<p>" {$set Token(new ParagraphToken($$));} ;

which would be translated to something like:

protected final void nPTAX)
t hrows Recogniti onException, Char StreanException,
TokenSt r eanExcepti on {
Token _token = null;
mat ch(” <p>");
_returnToken =
new Par agraphToken(text-of-current-rule);

}
Filtering Input Streams

Y ou often want to perform an action upon seeing a pattern or two in a complicated input
stream, such as pulling out linksin an HTML file. One solution isto takethe HTML

http://www.antlr.org/doc/lexer.html (16 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

grammar and just put actions where you want. Using a complete grammar is overkill and
you may not have a complete grammar to start with.

ANTLR provides a mechanism similar to AWK that lets you say "here are the patterns I'm
interested in--ignore everything else.” Naturally, AWK islimited to regular expressions
whereas ANTLR accepts context-free grammars (Uber-AWK?). For example, consider
pulling out the <p> and
 tags from an arbitrary HTML file. Using the filter option, this
IS easy:
class T extends Lexer;
options {

k=2:

filter=true;

}

P : n <p>ll ;
BR "
" ;

In this"mode", there is no possibility of asyntax error. Either the pattern is matched exactly
or it isfiltered out.

Thisworks very well for many cases, but is not sophisticated enough to handle the situation
where you want "almost matches' to be reported as errors. Consider the addition of the
<table...> tag to the previous grammar:

class T extends Lexer:;

options {
k=2:
filter = true;
}
P : "<p>" :
BR "
" ;
TABLE : "<table" (W5)? (ATTRIBUTE)* (W5)? '>' ;
W : "' "Nt] tAnt
ATTRI BUTE : ... ;

Now, consider input "<table 8 = width ;>" (a bogus table definition). Asis, the lexer would
simply scarf past thisinput without "noticing” the invalid table. What if you want to indicate
that a bad table definition was found as opposed to ignoring it? Call method

set Conm t ToPat h(bool ean comm t)

inyour TABLE ruleto indicate that you want the lexer to commit to recognizing the table
tag:
TABLE

"<table" (W5)?

{set Comm t ToPat h(true);}

(ATTRI BUTE) * (W5) ? ' >
Input "<table 8 = width ;>" would result in a syntax error. Note the placement after the
whitespace recognition; you do not want <tabletop> reported as a bad table (you want to
ignoreit).

http://www.antlr.org/doc/lexer.html (17 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

One further complication in filtering: What if the "skip language” (the stuff in between valid
tokens or tokens of interest) cannot be correctly handled by simply consuming a character
and trying again for avalid token? Y ou may want to ignore comments or strings or
whatever. In that case, you can specify arule that scarfs anything between tokens of interest
by using optionf i | t er =RULE. For example, the grammar below filters for <p> and

 tags as before, but also prints out any other tag (<...>) encountered.
class T extends Lexer;
options {

k=2,

filter=l GNORE;

charVocabulary = "\3".."\177";
}

P : n <p>ll ;
BR "
" ;

prot ect ed

| GNORE
: SR (D

{Systemout.println("bad tag:"+$get Text);}

| ¢ "\rAn" | "\r" | "\n") {newine();}

| :

Notice that the filter rule must track newlines in the general case where the lexer might emit
error messages so that the line number is not stuck at O.

Thefilter rule isinvoked either when the lookahead (in nextToken) predicts none of the
nonprotected lexical rules or when one of those rulesfails. In the latter case, theinput is
rolled back before attempting thefilter rule. Optionfi | t er =t r ue islike having afilter

rule such as:

| GNORE @ . ;

Actionsin regular lexical rules are executed even if the rule fails and the filter ruleis called.
To do otherwise would require every valid token to be matched twice (once to match and

once to do the actions like a syntactic predicate)! Plus, there are few actionsin lexer rules
(usually they are at the end at which point an error cannot occur).

Isthe filter rule called when commit-to-path is true and an error isfound in alexer rule? No,
an error is reported as with filter=true.

What happens if thereis a syntax error in the filter rule? Well, you can either put an
exception handler on the filter rule or accept the default behavior, which isto consume a
character and begin looking for another valid token.
In summary, the filter option allows you to:

1. Filter like awk (only perfect matches reported--no such thing as syntax error)

2. Filter like awk + catch poorly-formed matches (that is, "almost matches' like <table
8=3;> result in an error)

3. Filter but specify the skip language

http://www.antlr.org/doc/lexer.html (18 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR
ANTLR Masquerading as SED

To make ANTLR generate lexers that behave like the UNIX utility sed (copy standard in to
standard out except as specified by the replace patterns), use afilter rule that does the input
to output copying:

class T extends Lexer; options { k=2; filter=I GNORE;
charVocabulary = '"\3".."\177"; }

P : "<p>" {Systemout.print("<P>");};
BR : "
" {Systemout.print("
");};
prot ect ed
| GNORE

¢ "\r\n" | "\r" | "\n")

{newl ine(); Systemout.println("");}
| c:. {Systemout.print(c);}

This example dumps anything other than <p> and
 tags to standard out and pushes
lowercase <p> and
 to uppercase. Works great.

Nongreedy Subrules

Quick: What does the following match?
BLOCK : "{' (.)* "}";

Your first reaction is that it matches any set of charactersinside of curly quotes. Inredlity,
it matches '{" followed by every single character left on the input stream! Why? Well,
because ANTLR loops are greedy--they consume as much input as they can match. Since
the wildcard matches any character, it consumesthe '}' and beyond. Thisisapain for
matching strings, comments and so on.

Why can't we switch it around so that it consumes only until it sees something on the input
stream that matches what follows the loop, such asthe'}'? That is, why can't we make
loops nongreedy? The answer iswe can, but sometimes you want greedy and sometimes
you want nongreedy (PERL has both kinds of closure loops now too). Unfortunately,
parsers usually want greedy and lexers usually want nongreedy loops. Rather than make the
same syntax behave differently in the various situations, Terence decided to leave the
semantics of loops as they are (greedy) and make a subrule option to make loops nongreedy.

Greedy Subrules

| have yet to see a case when building a parser grammar where | did not want a subrule to
match as much input as possible. For example, the solution to the classic if-then-else clause
ambiguity isto match the "else" as soon as possible:

stat : "if" expr "then" stat ("else" stat)?

This ambiguity (which statement should the "else" be attached to) resultsin a parser
nondeterminism. ANTLR warnsyou about the (. . .) ? subrule asfollows:

warni ng: line 3: nondeterm ni smupon

http://www.antlr.org/doc/lexer.html (19 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

k==1:"el se"
between alts 1 and 2 of bl ock

If, on the other hand, you make it clear to ANTLR that you want the subrule to match
greedily (i.e., assume the default behavior), ANTLR will not generate the warning. Use the
gr eedy subrule option to tell ANTLR what you want:

stat : "if" expr "then" stat
(options {greedy=true;} : "else" stat)?
| ID

Y ou are not altering the behavior really, since ANTLR was going to choose to match the
"else" anyway, but you have avoided a warning message.

Thereisno such thing asanongreedy (. . .) ? subrule because telling an optional subrule
not to match anything is the same as not specifying the subrulein the first place. If you
make the subrule nongreedy, you will see:
warning in greedy.g: line(4),

Bei ng nongreedy only nakes sense

for (...)+and (...)*
war ni ng: line 4: nondeterm ni sm upon

k==1:"el se"

between alts 1 and 2 of bl ock

Greedy subrules are very useful in the lexer also. If you want to grab any whitespace on the
end of atoken definition, you can try (WS)? for some whitespace rule WS:

ID: (‘a'.."z')+ (W) ? ;
However, if you want to match ID in aloop in another rule that could also match
whitespace, you will run into a nondeterminism warning. Hereis acontrived |oop that
conflicts with the (WS)?in ID:
LOOP : (ID

| W5

) +

The whitespace on the end of the ID could be matched in ID or in LOOP now. ANTLR
chooses to match the WS immediately, in ID. To shut off the warning, simply tell ANTLR
that you mean for it do be greedy, it's default behavior:

ID: ("a .."z")+ (options {greedy=true;}: W5 ? ;
Nongreedy Lexer Subrules

ANTLR's default behavior of matching as much as possible in loops and optional subrulesis
sometimes not what you want in lexer grammars. Most loops that match "a bunch of
characters' in between markers, like curly braces or quotes, should be nongreedy loops. For
example, to match a nonnested block of characters between curly braces, you want to say:

CURLY_BLOCK_SCARF
)y

http://www.antlr.org/doc/lexer.html (20 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

Unfortunately, this does not work--it will consume everything after the '{" until the end of
theinput. The wildcard matches anything including '}' and so the loop merrily consumes
past the ending curly brace.

To force ANTLR to break out of the loop when it sees alookahead sequence consistent with
what follows the loop, use the greedy subrule option:
CURLY_BLOCK_SCARF
. 1 { 1
(
options {
gr eedy=f al se;
}

-~— - -
— %

To properly take care of newlinesinside the block, you should really use the following
version that "traps' newlines and bumps up the line counter:
CURLY_BLOCK_SCARF

L
(

options {

gr eedy=f al se;

}
; ‘Art ("\n")? {newine();}
| “\n' {new ine();}
| :
)*
Ty

Limitations of Nongreedy Subrules

What happens when what follows a nongreedy subrule is not as ssimple as asingle "marker
character like aright curly brace (i.e., what about when you need k>1 to break out of a
loop)? ANTLR will either "do the right thing" or warn you that it might not.

First, consider the matching C comments:

CMr . "/*" (.)* "*["

Aswith the curly brace matching, this rule will not stop at the end marker because the
wildcard matches the "*/" end marker aswell. You must tell ANTLR to make the loop
nongreedy:

CMmr . "/*" (options {greedy=false;} :.)* "*/" ;

Y ou will not get an error and ANTLR will generate an exit branch

do {
/'l nongreedy exit test
If ((LA(1)=="*")) break _Ioop3;

http://www.antlr.org/doc/lexer.html (21 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

Ooops. k=1, which is not enough lookahead. ANTLR did not generate a warning because it
assumes you are providing enough lookahead for al nongreedy subrules. ANTLR cannot
determine how much lookahead to use or how much is enough because, by definition, the
decision is ambiguous--it ssimply generates a decision using the maximum |ookahead.

Y ou must provide enough lookahead to let ANTLR see the full end marker:
class L extends Lexer;
options {
k=2,
}

CMr . "/*" (options {greedy=false;} :.)* "*/" ;

Now, ANTLR will generate an exit branch using k=2.
do {
/1 nongreedy exit test
if ((LA(D)=="*") && (LA(2)=="/"))
break | oop3;

If you increase k to 3, ANTLR will generate an exit branch using k=3 instead of 2, even
though 2 is sufficient. We know that k=2 is ok, but ANTLR is faced with a nondeterminism
at it will use as much information asit has to yield a deterministic parser.

There is one more issue that you should be aware of. Because ANTLR generates linear
approximate decisionsinstead of full LL (k) decisions, complicated "end markers' can
confuse ANTLR. Fortunately, ANTLR knows when it is confused and will let you know.

Consider a simple contrived example where aloop matches either ab or cd:

R: (options {greedy=false;}
: ("ab"|"cd")
) +

("ad"|"cb")

Following the loop, the grammar can match ad or cb. These exact sequences are not a
problem for afull LL(K) decision, but due to the extreme compression of the linear
approximate decision, ANTLR will generate an inaccurate exit branch. In other words, the
loop will exit, for example, on ab even though that sequence cannot be matched following
theloop. The exit condition isasfollows:

/'l nongreedy exit test
if (_cnt10>=1 && (LA(1)=="a'||LA(1l)=="¢c') &&
(LA(2)=="Db" || LA(2)=="d")) break _IooplO;

wherethe cnt 10 term ensures the loop goes around at least once (but has nothing to do

with the nongreedy exit branch condition really). Note that ANTLR has compressed al
characters that can possibly be matched at alookahead depth into a single set, thus,
destroying the sequence information. The decision matches the cross product of the sets,
including the spurious lookahead sequences such as ab.

Fortunately, ANTLR knows when a decision falls between its approximate decision and a

http://www.antlr.org/doc/lexer.html (22 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

full LL(K) decision--it warns you as follows;

warning in greedy.g: line(3),
nongreedy block may exit incorrectly due
to linmtations of |inear approximte |ookahead
(first k-1 sets in | ookahead not singleton).

The parenthetical remark gives you a hint that some k>1 lookahead sequences are correctly
predictable even with the linear approximate |lookahead compression. Theideaisthat if all
sets for depths 1..(k-1) are singleton sets (exactly one lookahead sequence for first k-1
characters) then linear approximate |lookahead compression does not weaken your parser.
So, the following variant does not yield awarning since the exit branch islinear
approximate aswell as full LL(K):

R: (options {greedy=false;}
)+
("ad"| "ae")

The exit branch decision now tests lookahead as follows:
(LA(1)=="a") && (LA(2)=="d'||LA(2)=="¢€")

which accurately predicts when to exit.

Lexical States

ANTLR has the ability to switch between multiple lexers using a token stream multiplexor.
Please see the discussion in streams.

The End Of File Condition

A method is available for reacting to the end of file condition asif it were an event; e.g., you
might want to pop the lexer state at the end of an include file. This method,
Char Scanner . uponEOF() , iscalled from next Token() right before the scanner

returns an EOF_TYPE token object to parser:

public void uponECF() |
t hrows TokenStreanException, Char StreanException;

This event is not generated during a syntactic predicate evaluation (i.e., when the parser is
guessing) nor in the middle of the recognition of alexical rule (that would bean 10
exception). Thisevent is generated only after the complete evaluation of the last token and
upon the next request from the parser for atoken.

Y ou can throw exceptions from this method like "Heh, premature eof" or aretry stream
exception. Seethe includeFile/P.g for an example usage.

Case sensitivity

You may useoption caseSensi t i ve=f al se inthelexer to indicate that you do not

want case to be significant when matching characters against the input stream. For example,
you want element ' d' to match either upper or lowercase D, however, you do not want to

change the case of the input stream. We have implemented this feature by having the lexer's

http://www.antlr.org/doc/lexer.html (23 of 29) [8/10/2001 10:45:52 AM]

http://www.antlr.org/doc/streams.html#lexerstates

Lexical Analysis with ANTLR

LA() lookahead method return lowercase versions of the characters. Method consune()
still adds the original characters to the string buffer associated with atoken. We make the
following notes:

« Thelowercasing isdone by amethodt oLower () inthelexer. Thiscan be
overridden to get more specific case processing. using option caseSensitive calls
method Char Scanner . set CaseSensi tive(...),whichyou canaso call
before (or during | suppose) the parse.

o ANTLR issuesawarning when caseSensi ti ve=f al se and uppercase ASCI|
characters are used in character or string literals.

Case sengitivity for literalsis handled separately. That is, set lexer option

caseSensi tivelLiteral s tofalse when you want the literals testing to be case-insensitive.
Implementing this required changesto the literals table. Instead of adding a String, it adds
an ANTLRHashString that implements a case-insensitive or case-sensitive hashing as
desired.

Note: ANTLR checks the characters of alexer string to make sure they are lowercase, but
does not process escapes correctly--put that one on the "to do"” list.

Ignoring whitespace in the lexer

One of the great things about ANTLR isthat it generates full predicated-LL (k) lexers rather
than the weaker (albeit sometimes easier-to-specify) DFA-based lexers of DLG. With such
power, you are tempted (and encouraged) to do real parsing in the lexer. A great example of
thisisHTML parsing, which begs for atwo-level parse: the lexer parsersall the attributes
and so on within atag, but the parser does overall document structure and ordering of the
tags etc... The problem with parsing within alexer isthat you encounter the usual "ignore
whitespace” issue as you do with regular parsing.

For example, consider matching the <t abl e> tag of HTML, which has many attributes
that can be specified within the tag. A first attempt might yield:

OTABLE "<table" (ATTR)* '>'

Unfortunately, input "<t abl e bor der =1>" does not parse because of the blank

character after thet abl e identifier. The solution is not to ssimply have the lexer ignore

whitespace asit is read in because the lookahead computations must see the whitespace
characters that will be found in the input stream. Further, defining whitespace as a
rudimentary set of things to ignore does not handle all cases, particularly difficult ones, such
as commentsinside tags like

<table <!l--wow...a comment--> border=1>

The correct solution isto specify arule that is called after each lexical element (character,
string literal, or lexical rule reference). We provide the lexer rule option i gnor e to let you
specify the rule to use as whitespace. The solution to our HTML whitespace problem is
therefore:
TABLE
options { ignore=W5, }

: "<table" (ATTR)* '>'

http://www.antlr.org/doc/lexer.html (24 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR
/'l can be protected or non-protected rule
W5 :] "\'n" | COWMENT |
We think thisis cool and we hope it encourages you to do more and more interesting things
in the lexer!

Oh, almost forgot. Thereisabug in that an extra whitespace reference is inserted after the
end of alexer alternative if the last element is an action. The effect isto include any
whitespace following that token in that token's text.

Tracking Line Information

Each lexer object hasal i ne member that can be incremented by calling new i ne() or by
simply changing its value (e.g., when processing #1 i ne directivesin C).
SL_COWMMENT : "“//" (~'\n")* "\n" {newine();} ;

Do not forget to split out ‘\ n’ recognition when using the not operator to read until a
stopping character such as:
BLOCK: ' ('
("\'n" { newline(); }
| ~C “\n" | "))
)*
)

Another way to track line information isto override the consume() method:

Tracking Column Information

ANTLR (2.7.1 and beyond), tracks character column information so that each token knows
what column it startsin; columns start at 1 just like line numbers. The
CharScanner.consume() method asks method tab() to update the column number if it seesa
tab, else it just increments the column number:

it (c=='\t') {

tab();
}
el se {

I nput St at e. col uMm++;
}

By default, tab() is defined as follows:

/**

advance the current col umm nunber by an appropriate
anmount. If you do not override this to specify how
much to junp for a tab, then tabs are counted as

one char. This nmethod is called from consune().
*/

http://www.antlr.org/doc/lexer.html (25 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

public void tab() {
[l update inputState.colum as function of
/'l inputState.colum and tab stops.
/'l For exanple, if tab stops are colums 1
// and 5 etc... and colum is 3, then add 2
/1l to colum.
I nput St at e. col uMm++;

}

Upon new line, the lexer needs to reset the column number to 1. Hereisthe default
implementation of CharScanner.newling():

public void newine() {
i nput St ate. |ine++;
I nput St at e. col unm = 1;

}

Do not forget to call newline() in your lexer rule that matches \n' lest the column number
not be reset to 1 at the start of aline.

The shared input state object for alexer is actually the critter that tracks the column number
(as well asthe starting column of the current token):

publ i c cl ass Lexer Sharedl nput State {
protected int col um=1;
protected int |ine=1,
protected int tokenStart Col um
protected int tokenStartLine =

=]_;
1,

}

If you want to handle tabsin your lexer, just implement a method like the following to
override the standard behavior.

/** set tabs to 4, just round colum up to next tab + 1
12345678901234567890
X X X X

*/
public void tab() {
int t = 4,
int ¢ = getColum();
int nc = (((c-1)/t)+1)*t+1;
set Col um(nc);
}

Seetheexanpl es/ j ava/ col umms directory for the complete example.

Using Explicit Lookahead

On rare occasions, you may find it useful to explicitly test the lexer lookahead in say a
semantic predicate to help direct the parse. For example, /*...*/ comments have atwo
character stopping symbol. The following example demonstrates how to use the second
symbol of lookahead to distinguish between asingle '/ and a"*/":

M__ COVVENT

http://www.antlr.org/doc/lexer.html (26 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR
" / *x
({ LA(2)!="/" }?2 "*
| "\n" { newmine(); }
|~)
) *
" */ "
The same effect might be possible via a syntactic predicate, but would be much slower than
asemantic predicate. A DFA-based lexer handles this with no problem because they use a

bunch of (what amount to) gotos whereas we're stuck with structured elements like
while-loops.

A Surprising Use of A Lexer: Parsing

The following set of rules match arithmetical expressionsin alexer not a parser (whitespace
between elementsis not allowed in this example but can easily be handled by specifying
rule optioni gnor e for each rule):

EXPR
{ int val; }
val =ADDEXPR
{ Systemout.println(val); }

prot ect ed
ADDEXPR returns [int val]
{ int tnp; }
; val =MULTEXPR
("+ tnmp=MITEXPR { val += tnp; }
| '-' tnmp=MULTEXPR { val -= tnp; }
)*

prot ect ed
MULTEXPR returns [int val]
{ int tnp; }
: val =ATOM
(XY tnp=ATOM { val *= tnp; }
| I tnmp=ATOM { val /= tnp; }
)*

prot ect ed
ATOM returns [int val]
: val =I NT
| ‘(' val =ADDEXPR ')

prot ect ed
INT returns [int val]

http://www.antlr.org/doc/lexer.html (27 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR
("0 .."9)+
{val =I nt eger. val uef ($get Text) ; }

But...We've Always Used Automata For Lexical Analysis!

Lexica analyzerswere all built by hand in the early days of compilers until DFAs took over
as the scanner implementation of choice. DFAs have several advantages over hand-built
scanners.

« DFAscan easily be built from terse regular expressions.

« DFAsdo automatic left-factoring of common (possibly infinite) left-prefixes. In a
hand-built scanner, you have to find and factor out all common prefixes. For example,
consider writing alexer to match integers and floats. The regular expressions are

straightforward:
integer : "[0-9]+" ;
r eal © "[0-9]+{.[0-9]*}|.[0-9]+" ;

Building a scanner for this would require factoring out the common [0- 9] +. For
example, a scanner might look like:

Token next Token() {
if (Character.isDigit(c)) {
mat ch an i nteger
if (c==".") {
mat ch anot her i nteger
return new Token(REAL);

}
el se {
return new Token(| NT);
}
}
else if (c==".") {

match a float starting with .
return new Token(REAL);

}

el se ...

}

Conversaly, hand-built scanners have the following advantages over DFA implementations:

« Hand-built scanners are not limited to the regular class of languages. They may use
semantic information and method calls during recognition whereas a DFA has no
stack and is typically not semantically predicated.

« Unicode (16 bit values) is handled for free whereas DFAs typically have fits about
anything but 8 bit characters.

« DFAsaretablesof integers and are, consequently, very hard to debug and examine.

« A tuned hand-built scanner can be faster than a DFA. For example, simulating the
DFA to match [O- 9] + requiresn DFA state transitions where n is the length of the
integer in characters.

Tom Pennello of Metaware back in 1986 ("Very Fast LR Parsing") generated

http://www.antlr.org/doc/lexer.html (28 of 29) [8/10/2001 10:45:52 AM]

Lexical Analysis with ANTLR

L R-based parsers in machine code that used the program counter to do state
transitions rather than simulating the PDA. He got a huge speed up in parse time. We
can extrapolate from this experiment that avoiding a state machine simulator in favor
of raw code resultsin a speed up.

So, what approach does ANTLR 2.xx take? Neither! ANTLR 2.xx allows you to specify
lexical items with expressions, but generates alexer for you that mimics what you would
generate by hand. The only drawback isthat you still have to do the left-factoring for some
token definitions (but at least it is done with expressions and not code). This hybrid
approach allows you to build lexers that are much stronger and faster than DFA-based |exers
while avoiding much of the overhead of writing the lexer yourself.

In summary, specifying regular expressions is simpler and shorter than writing a hand-built
lexer, but hand-built lexers are faster, stronger, able to handle unicode, and easy to debug.
This analysis has led many programmers to write hand-built lexers even when
DFA-generation tools such as| ex and dl g are commonly-available. ANTLR 1.xx made a
parallel argument concerning PDA-based LR parsers and recursive-descent L L -based
parsers. As afinal justification, we note that writing lexersistrivial compared to building
parsers; also, once you build alexer you will reuse it with small modifications in the future.

Version: $Id: //depot/code/org.antlr/release/antlr-2.7.1/doc/lexer.html#2 $

http://www.antlr.org/doc/lexer.html (29 of 29) [8/10/2001 10:45:52 AM]

ANTLR Tree Parsers

\ ’! Or, The Entity Formerly Known As SORCERER

ANTLR 2.xx helps you build intermediate form trees (ASTs) by augmenting a grammar with tree operators,
JGLII"U rewrite rules, and actions. ANTLR also allows you to specify the grammatical structure of ASTSs, thus,

ANTLR supporting the manipulation or simple walking of treesto produce translations.

Gur Formerly, a separate tool, SORCERER, was used to generate tree parsers, but ANTLR has taken over this
U role. ANTLR now builds recognizers for streams of characters, tokens, or tree nodes.

What's a tree parser?

Parsing is the application of grammatical structure to a stream of input symbols. ANTLR takes this further
than most tools and considers atree to be a stream of nodes, albeit in two dimensions. In fact, the only real
differencein ANTLR's code generation for token stream parsing versus tree parsing lies in the testing of
lookahead, rule-method definition headers, and the introduction of atwo-dimensional tree structure
code-generation template.

What kinds of trees can be parsed?

ANTLR tree parsers can walk any tree that implements the AST interface, which imposes a child-sibling like
structure to whatever tree data-structure you may have. The important navigation methods are:

o get First Chil d: Return areference to the first child of the sibling list.
« get Next Si bl i ng: Return areference to the next child in the list of siblings.

Each AST nodeis considered to have alist of children, some text, and a "token type". Trees are self-similar in
that atree nodeisaso atree. An AST is defined completely as.

public interface AST {
/** Get the token type for this node */
public int getType();
/** Set the token type for this node */
public void setType(int ttype);
/** CGet the token text for this node */
public String getText();
/** Set the token text for this node */
public void setText(String text);
[** CGet the first child of this node; null if no children */
public AST getFirstChild();
/** Set the first child of a node. */
public void setFirstChil d(AST c);
/** CGet the next sibling in line after this one */
publ i ¢ AST get Next Si bling();
/** Set the next sibling after this one. */
public void set NextSibling(AST n);
/** Add a (rightnost) child to this node */
public void addChil d(AST c);

http://www.antlr.org/doc/sor.html (1 of 7) [8/10/2001 10:46:27 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR Tree Parsers

Tree grammar rules

Aswith the SORCERER tool of PCCTS 1.33 and the ANTLR token grammars, tree grammars are collections
of EBNF rules embedded with actions, semantic predicates, and syntactic predicates.

rul e: alternativel
| alternative2

| alternativen
Each alternative production is composed of alist of elements where an element can be one of theitemsin a
regular ANTLR grammar with the addition of the tree pattern element, which has the form:

#(root-token childl child2 ... childn)

For example, the following tree pattern matches a ssmple PLUS-rooted tree with two | NT children:=

#(PLUS I NT INT)

The root of atree pattern must be a token reference, but the children elements can even be subrules. For
example, acommon structure is an if-then-el se tree where the el se-clause statement subtree is optional:

#(I F expr stat (stat)?)

An important thing to remember when specifying tree patterns and tree grammarsin general isthat sufficient
matches are done not exact matches. Aslong as the tree satistfies the pattern, a match is reported, regardless of
how much is left unparsed. For example, #(A B) will report amatch for any larger tree with the same
structuresuchas#(A #(B C) D).

Syntactic predicates

ANTLR tree parsers use only asingle symbol of lookahead, which is normally not a problem as intermediate
forms are explicitly designed to be easy to walk. However, there is occasionally the need to distinguish
between similar tree structures. Syntactic predicates can be used to overcome the limitations of limited fixed
lookahead. For example, distinguishing between the unary and binary minus operator is best done by using
operator nodes of differing token types, but given the same root node, a syntactic predicate can be used to
distinguish between these structures:

expr: (#(M NUS expr expr))=> #(M NUS expr expr)
| #(M NUS expr)

The order of evaluation is very important as the second alternativeis a"subset” of the first alternative.

Semantic predicates

Semantic predicates at the start of an aternative are simply incorporated into the alternative prediction
expressions as with aregular grammar. Semantic predicates in the middle of productions throw exceptions

http://www.antlr.org/doc/sor.html (2 of 7) [8/10/2001 10:46:27 AM]

ANTLR Tree Parsers
when they evaluate to false just like aregular grammar.

An Example Tree Walker

Consider how you would build a simple calculator. One approach would be to build a parser that computed
expression values as it recognized the input. For the purposes of illustration, we will build a parser that
constructs a tree intermediate representation of the input expression and atree parser that walks the
intermediate representation, computing the result.

Our recognizer, Cal cPar ser , isdefined viathe following grammar.

cl ass Cal cParser extends Parser;
options {

bui | dAST = true; /'l uses ComoOnAST by default
}

expr: mexpr (PLUSM nmexpr)* SEM!

mexpr
atom (STAR* atom) *

atom I NT

The PLUS and STAR tokens are considered operators and, hence, subtree roots; they are annotated with the "'
character. The SEM token reference is suffixed with the ! ' character to indicate it should not be included in
the tree.

The scanner for this calculator is defined as follows:

cl ass Cal cLexer extends Lexer;

W6 : ('
| "\t
| "\'n'
|)
{ _ttype = Token. SKIP; }

LPAREN: ' (°
RPAREN: ')’
STAR '+
PLUS: "+
SEM L

http://www.antlr.org/doc/sor.html (3 of 7) [8/10/2001 10:46:27 AM]

ANTLR Tree Parsers

| NT : ("0 ..'9)+

The trees generated by this recognizer are simple expression trees. For example, input "3* 4+5" resultsin a
treeof theform#(+ (* 3 4) 5).Inordertobuild atree waker for trees of thisform, you have to
describe its structure recursively to ANTLR:

cl ass Cal cTreeWal ker extends TreeParser;

expr : #(PLUS expr expr)
| #(STAR expr expr)
| I NT

Once the structure has been specified, you are free to embed actions to compute the appropriate result. An
easy way to accomplish thisisto have the expr rulereturn an integer result and then have each aternative
compute the subresult for each subtree. The following tree grammar and actions produces the desired effect:

cl ass Cal cTreeVl ker extends TreeParser;

expr returns [int r]
{
int a,b;
r=0;

: #(PLUS a=expr b=expr) {r
| #(STAR a=expr b=expr) {r
| i i I NT {r

a+b; }
a*b;}
| nt eger. parselnt(i.getText());}

Notice that no precedence specification is necessary when computing the result of an expression--the structure
of the tree encodes thisinformation. That is why intermediate trees are much more than copies of the input in
tree form. The input symbols are indeed stored as nodes in the tree, but the structure of the input is encoded as
the relationship of those nodes.

The code needed to launch the parser and tree walker is:

i nport java.io.*;
i mport antl r. CormpnAST;
i mport antlr.collections. AST;

class Calc {
public static void main(String[] args) {
try {
Cal cLexer |exer =
new Cal cLexer (new Dat al nput St ream(Systemin));

Cal cParser parser = new Cal cParser (| exer);
/'l Parse the input expression
parser.expr();
CommonAST t = (CommopnAST) par ser . get AST() ;
/1 Print the resulting tree out in LISP notation
Systemout.println(t.toStringList());

http://www.antlr.org/doc/sor.html (4 of 7) [8/10/2001 10:46:27 AM]

ANTLR Tree Parsers

Cal cTreeVal ker wal ker = new Cal cTreeWal ker () ;
[l Traverse the tree created by the parser
int r = wal ker.expr(t);
Systemout.println("value is "+r);

} catch(Exception e) {
Systemerr.println("exception: "+e);

}

Transformations

While tree parsers are useful to examine trees or generate output from atree, they must be augmented to
handle tree transformations. ANTLR tree parsers support the bui | dAST option just like regular parsers; this
is analogous to the transform mode of SORCERER. Without programmer intervention, the tree parser will
automatically copy the input tree to aresult tree. Each rule has an implicit (automatically defined) result tree;
the result tree of the start symbol can be obtained from the tree parser viathe get AST method. The various
aternatives and grammar el ements may be annotated with "! " to indicate that they should not be
automatically linked into the output tree. Portions of, or entire, subtrees may be rewritten.

Actions embedded within the rules can set the result tree based upon tests and tree constructions. See the
section on grammar action translations.

An Example Tree Transformation
Revisiting the smple Cal ¢ example from above, we can perform afew tree transformations instead of

computing the expression value. The action in the following tree grammar optimizes away the addition
identity operation (addition to zero).

cl ass Cal cTreeWal ker extends TreeParser;

opti ons{
bui | dAST = true; [/ "transfornm npde
}
expr:! #(PLUS | eft:expr right:expr)
[/ '"!" turns off auto transform
{

[l x+0 = x
if (#right.getType()==INT &&
I nt eger. parsel nt (#right.getText())==0)

{

#expr = #left;
}
[l 0+x = X

else if (#l eft.getType()==INT &&
| nt eger. parselnt (#l eft. get Text())==0)

{
#expr = #right;
}
Il x+y
el se {
#expr = #(PLUS, left, right);

http://www.antlr.org/doc/sor.html (5 of 7) [8/10/2001 10:46:27 AM]

ANTLR Tree Parsers

}

#(STAR expr expr) // use auto transformation
oI NT

The code to launch the parser and tree transformer is:

i nport java.io.*;
i mport antl r. CormonAST;
i mport antlr.collections. AST;

class Calc {
public static void main(String[] args) {

try {

}

Cal cLexer |exer =
new Cal cLexer (new Dat al nput St ream(Systemin));
Cal cParser parser = new Cal cParser (| exer);
/1 Parse the input expression
parser.expr();
CommonAST t = (CommopnAST) par ser . get AST() ;
/1 Print the resulting tree out in LISP notation
Systemout.println(t.toLispString());

Cal cTreeWal ker wal ker = new Cal cTreeWal ker () ;
/'l Traverse the tree created by the parser
wal ker . expr(t);

/1l Get the result tree fromthe wal ker

t = (CommoOnAST) wal ker. get AST() ;
Systemout.println(t.toLispString());

} catch(Exception e) {

Systemerr.println("exception: "+e);

Examining/Debugging ASTs

Often when developing atree parser, you will get parse errors. Unfortunately, your trees are usually very
large, making it difficult to determine where your AST structure error is. To help the situation (I found it
VERY useful when building the Javatree parser), | created an ASTFr ane class (aJFr ane) that you can use
to view your ASTsin aSwing tree view. It does not copy the tree, but uses a TreeModel. Run

ant | r. debug. m sc. ASTFr ane asan application to test it out or see the new Java grammar

Mai n. j ava. | amnot sureit will live in the same package as I'm not sure how debugging etc... will shake
out with future ANTLR versions. Hereisasimple example usage:

public static void main(String args[]) {
/| Create the tree nodes
ASTFactory factory = new ASTFactory();
CommonAST r = (CommonAST) factory. create(0, "ROOT");
r.addChi | d((CommonAST) factory.create(0, "Cl1"));
r.addChi | d((CormmonAST) factory. create(0, "C2"));
r.addChi | d((CormonAST) factory. create(0, "C3"));

http://www.antlr.org/doc/sor.html (6 of 7) [8/10/2001 10:46:27 AM]

ANTLR Tree Parsers

ASTFrame franme = new ASTFrane("AST JTree Exanple", r);
frame. setVisible(true);

}

Version: $ld: //depot/code/org.antlr/release/antir-2.7.1/doc/sor.html#l $

http://www.antlr.org/doc/sor.html (7 of 7) [8/10/2001 10:46:27 AM]

ANTLR Specification: Vocabularies

JGuru
ANTLR

iGuru

Token Vocabularies

Every grammar specifies language structure with rules (substructures) and vocabulary
symbols. These symbols are equated with integer "token types" for efficient comparison at
run-time. The filesthat define this mapping from symbol to token type are fundamental to
the execution of ANTLR and ANTLR-generated parsers. This document describes the files
used and generated by ANTLR plus the options used to control the vocabularies.

Introduction

A parser grammar refersto tokensin its vocabulary by symbol that will correspond to Token
objects, generated by the lexer or other token stream, at parse-time. The parser compares a
unique integer token type assigned to each symbol against the token type stored in the token
objects. If the parser islooking for token type 23, but finds that the first lookahead token's
tokentype, LT(1) . get Type(), isnot 23, then the parser throws

M smat chedTokenExcept i on.

A grammar may have an import vocabulary and always has an export vocabulary, which can
be referenced by other grammars. Imported vocabularies are never modified and represent
the "initial condition" of the vocabulary. Do not confuse importV ocabular

The following represent the most common guestions:
How does ANTLR decide which vocabulary symbol gets what token type?

Each grammar has a token manager that manages a grammar's export vocabulary. The
token manager can be preloaded with symbol / token type pairs by using the grammar
importVocab option. The option forces ANTLR to look for afile with mappings that ook
like:

PLUS=44

Without the importV ocab option, the grammar's token manager is empty (with one caveat
you will see later).

Any token referenced in your grammar that does not have a predefined token typeis
assigned atypein the order encountered. For example, in the following grammar, tokens A
and B will be 4 and 5, respectively:

cl ass P extends Parser;
a:. AB;

Vocabulary file names are of the form: NameTokenTypes. t xt .
Why do token types start at 4?

Because ANTLR needs some special token types during analysis. User-defined token types
must begin after 3.

What files associated with vocabulary does ANTLR generate?

ANTLR generates VTokenTypes. t xt and VTokenTypes. j ava for vocabulary V
where V is either the name of the grammar or specified in an exportV ocab=V option. The

http://www.antlr.org/doc/vocab.html (1 of 5) [8/10/2001 10:46:44 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR Specification: Vocabularies

text fileis sort of a"freezedried" token manager and represents the persistent state needed

by ANTLR to allow agrammar in adifferent file to see agrammar's vocabulary including
string literals etc... The Javafileis an interface containing the token type constant
definitions. Generated parsersi npl enent one of these interfaces to obtain the appropriate

token type definitions.

How does ANTLR synchronize the symbol-type mappings between grammars
in the same file and in different files?

The export vocabulary for one grammar must become the import vocabulary for another or
the two grammars must share a common import vocabulary.

Imagine aparser Pinp.g:

/'l yields PTokenTypes.t xt

cl ass P extends Parser;

/'l options {exportVocab=P;} ---> default!
decl : "int" ID;

andalexerLinl.g

class L extends Lexer;
options {
| nport Vocab=P; // reads PTokenTypes.txt

}
ID: (‘a'.."z")+ ;

ANTLR generates L TokenTypes.txt and L TokenTypes.java even though L is primed with
values from P's vocabulary.

Grammars in different files that must share the same token type space should use the
importV ocab option to preload the same vocabulary.

If these grammars are in the same file, ANTLR behavesin exactly sameway. However,
you can get the two grammars to share the vocabulary (allowing them both to contribute to
the same token space) by setting their export vocabularies to the same vocabulary name.
For example, with P and L in onefile, you can do the following:

/'l yields PTokenTypes.txt
cl ass P extends Parser;

/'l options {exportVocab=P;} ---> default!
decl : "int" ID;
class L extends Lexer;
options {
exportVocab=P; // shares vocab P
}

ID: (‘a'.."z")+ ;
If you leave off the vocab options from L, it will choose to share the first export vocabulary
inthefile; in this case, it will share P'svocabulary.

/'l yields PTokenTypes.txt
cl ass P extends Parser;
decl : "int" ID;

/!l shares P's vocab

http://www.antlr.org/doc/vocab.html (2 of 5) [8/10/2001 10:46:44 AM]

ANTLR Specification: Vocabularies

class L extends Lexer;
ID: (‘a.."z")+ ;

The token type mapping file looks like this

P /'l exported token vocab nane
LI TERAL _int="int"=4
| D=5

Grammar Inheritance and Vocabularies

Grammars that extend supergrammars inherit rules, actions, and options but what
vocabulary does the subgrammar use and what token vocabulary does it use? ANTLR sees
the subgrammar as if you had cut and paste all of the nonoverridden rules of the
supergrammar into the subgrammar like an include. Therefore, the set of tokensin the
subgrammar is the union of the tokens defined in the supergrammar and in the
supergrammar. All grammars export avocabulary file and so the subgrammar will export
and use a different vocabulary than the supergrammar. The subgrammar always imports the
vocabulary of the supergrammar unless you override it with an importV ocab option in the
subgrammar.

A grammar Q that extends P primes its vocabulary with Psvocabulary asif Q had specified
optioni nmpor t Vocab=P. For example, the following grammar has two token symbols.

cl ass P extends Parser;
a:. AZ;

The subgrammar, Q, initially has the same vocabulary as the supergrammar, but may add
additional symbols.

class Q extends P;

f . B;

In this case, Q defines one more symbol, B, yielding avocabulary for Q of {A,B,C}.

The vocabulary of a subgrammar is always a superset of the supergrammar's vocabulary.
Note that overriding rules does not affect the initial vocabulary.

If your subgrammar requires new lexical structures, unused by the supergrammar, you
probably need to have the subparser use a sublexer. Override the initial vocabulary with an
importV ocab option that specifies the vocabulary of the sublexer. For example, assume
parser P uses PL asalexer. Without an importVocab override, Q's vocabulary would use
P's vocab and, consequently, PL's vocabulary. 1f you would like Q to use token types from
another lexer, say QL, do the following:

class Q extends P;
options {
| mport Vocab=QL;
}
f : B;
Q's vocab will now be the same or a superset of QL's vocabulary.

Recognizer Generation Order

http://www.antlr.org/doc/vocab.html (3 of 5) [8/10/2001 10:46:44 AM]

ANTLR Specification: Vocabularies

If al of your grammars are in one file, you do not have to worry about which grammar file
ANTLR should process first, however, you still need to worry about the order in which
ANTLR seesthe grammars within the file. If you try to import a vocabulary that will be
exported by agrammar later in the file, ANTLR will complain that it cannot load thefile.
The following grammar file will cause antlr to fail:

cl ass P extends Parser;
options {

| nport Vocab=L;

}

a

"int" |ID
class L extends Lexer;
ID: '"a';

ANTLR will complain that it cannot find L TokenTypes.txt because it has not seen grammar
L yet in the grammar file. On the other hand, if you happened to have L TokenTypes.txt
lying around (from a previous run of ANTLR on the grammar file when P did not exist?),
ANTLR will load it for P and then overwriteit again for L. ANTLR must assume that you
want to load avocabulary generated from another file asit cannot know what grammars are
approaching even in the samefile.

In general, if you want grammar B to use token types from grammar A (regardless of
grammar type), then you must run ANTLR on grammar A first. So, for example, atree
grammar that uses the vocabulary of the parser grammar should be run after ANTLR has
generated the parser.

When you want a parser and lexer, for example, to share the same vocabulary space, al you
have to do is place them in the same file with their export vocabs pointing at the same

place. If they are in separate files, have the parser's import vocab set to the lexer's export
vocab unless the parser is contributing lots of literals. In this case, reverse the import/export
relationship so the lexer uses the export vocabulary of the parser.

Tricky Vocabulary Stuff

What if your grammars are in separate files and you still want them to share all or part of a
token space. There are two solutions: (1) have the grammars import the same vocabulary or
(2) have the grammars all inherit from the same base grammar that contains the common
token space.

The first solution applies when you have two lexers and two parsers that must parse
radically different portions of the input. The example in examples/java/multiLexer of the
ANTLR 2.6.0 distribution is such a situation. The javadoc comments are parsed with a
different lexer/parser than the regular Java portion of the input. The"*/" terminating
comment lexical structure is necessarily recognized by the javadoc lexer, but it is natural to
have the Java parser enclose the launch of the javadoc parser with open/close token
references:

j avadoc
JAVADOC OPEN

{

DenpJavaDocPar ser jdocparser =

http://www.antlr.org/doc/vocab.html (4 of 5) [8/10/2001 10:46:44 AM]

ANTLR Specification: Vocabularies

new DenpJavaDocPar ser (getl nput State());
j docparser.content();

}
JAVADOC_CLOSE

The problemis: the javadoc lexer defines JAVADOC_CLOSE and hence defines its token
type. The vocabulary of the Java parser is based upon the Java lexer not the javadoc lexer,
unfortunately. To get the javadoc lexer and Java lexer to both see JAVADOC_CLOSE (and
have the same token type), have both lexers import avocabulary file that contains this token
type definition. Here are the heads of DemoJavalexer and DemoJavaDocL exer:

cl ass DenpJavalLexer extends Lexer;
options {

| nport Vocab = Common;
}

cl ass DenpJavaDoclLexer extends Lexer:
options {

| nport Vocab = Common;
}

CommonTokenTypes.txt contains:

Common // nane of the vocab
JAVADOC CLOSE=4

The second solution to vocabulary sharing applies when you have say one parser and three
different lexers (e.g., for various flavors of C). If you only want one parser for space
efficiency, then the parser must see the vocabulary of all three lexers and prune out the
unwanted structures grammatically (with semantic predicates probably). Given CLexer,
GCCLexer, and MSCL exer, make CL exer the supergrammar and have CLexer define the
union of all tokens. For example, if MSCLexer needs"_int32" then reserve atoken type
visibleto all lexersin CLexer:

t okens {
| NT32;
}
In the MSCL exer then, you can actually attach aliteral to it.
t okens {
| NT32="_i nt 32"
}

In this manner, the lexers will all share the same token space allowing you to have asingle
parser recognize input for multiple C variants.
Version: $Id: //depot/code/org.antlr/release/antlr-2.7.1/doc/vocab.html#1 $

http://www.antlr.org/doc/vocab.html (5 of 5) [8/10/2001 10:46:44 AM]

Error Handling and Recovery

JGuru
ANTLR

jGuru

Error Handling and Recovery

All syntactic and semantic errors cause parser exceptions to be thrown. In particular, the methods used to match
tokensin the parser base class (match et a) throw MismatchedTokenException. If the lookahead predicts no
alternative of a production in either the parser or lexer, then a NoViableAltException is thrown. The methods in
the lexer base class used to match characters (match et al) throw anal ogous exceptions.

ANTLR will generate default error-handling code, or you may specify your own exception handlers. Either case
results (where supported by the language) in the creation of at r y/ cat ch block. Sucht r y{} blocks surround
the generated code for the grammar element of interest (rule, alternate, token reference, or rule reference). If no
exception handlers (default or otherwise) are specified, then the exception will propagate all the way out of the
parser to the calling program.

ANTLR's default exception handling is good to get something working, but you will have more control over
error-reporting and resynchronization if you write your own exception handlers.

Note that the'@' exception specification of PCCTS 1.33 does not apply to ANTLR 2.0.

ANTLR Exception Hierarchy

ANTLR-generated parsers throw exceptions to signal recognition errors or other stream problems. All exceptions
derive from ANTLRExcept i on. The following diagram shows the hierarchy:

—| ={® CharStreamException |—| o CharStreamIDExceptiDnl

—| GMismatn:hedCharExceptiDn|

—| GMismatc:hedTDkenExc:eptiDn|

—|' {3 RecognitionException I——| L C NDViabIeAltExceptinﬂ

—| L C NDViabIeAItFDrCharExceptiDn|

—| L C) SemanticExceptiDnl

—| GTDkenStreamlDExceptiDn|

—|' {3 TokenStreamException I——| GTukenStreamF’LecugnitiDnExceptiDn|
—| {3 TokenStreamRetryException |

1= ANTLRException | —

Exception Description
ANTLRExcept i on Root of the exception hiearchy. You can directly
subclass this if you want to define your own exceptions
unless they live more properly under one of the specific
exceptions below.

Char St reamExcept i on Something bad that happens on the character input
stream. Most of the timeit will be an 10 problem, but
you could define an exception for input coming from a
dialog box or whatever.

Char St reaml OExcepti on The character input stream had an 1O exception (e.g.,
CharBuffer.fill () canthrow this). If
next Token() seesthis, it will convertitto a
TokenSt r eam OExcepti on.

http://www.antlr.org/doc/err.html (1 of 5) [8/10/2001 10:46:57 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

Error Handling and Recovery

Recogni ti onExcepti on

M smat chedChar Excepti on
M smat chedTokenExcepti on

NoVi abl eAl t Excepti on

NoVi abl eAl t For Char Excepti on

Semant i cExcepti on

TokenSt reanExcepti on
TokenSt ream OCException

TokenSt r eanRecogni ti onExcepti on

TokenSt r eanmRet r yExcepti on

A generic recognition problem with the input. Usethis
asyour "catch al" exception in your main() or other
method that invokes a parser, lexer, or treeparser. All
parser rules throw this exception.

Thrown by CharScanner.match() when it islooking for a
character, but finds a different one on the input stream.
Thrown by Parser.match() when it islooking for atoken,
but finds a different one on the input stream.

The parser finds an unexpected token; that is, it finds a
token that does not begin any alternative in the current
decision.

The lexer finds an unexpected character; that is, it finds
acharacter that does not begin any alternative in the
current decision.

Used to indicate syntactically valid, but nonsensical or
otherwise bogus input was found on the input stream.
This exception is thrown automatically by failed,
validating semantic predicates such as:

a: A{false}? B ;

ANTLR generates:

mat ch(A) ;

if (!(false)) throw new
Senmant i cException("fal se");

mat ch(B) ;

Y ou can throw this exception yourself during the parse
if one of your actions determines that the input is
wacked.

Indicates that something went wrong while generating a
stream of tokens.

Wraps an |OExceptionin a

TokenSt r eanExcepti on

WrapsaRecogni ti onExceptionina

TokenSt r eanExcept i on so you can passit along
on a stream.

Signals aborted recognition of current token. Try to get
one again. Used by TokenSt r eanBel ector.retry()
to force next Token() of stream to re-enter and retry.
See the exampleg/javalincludeFile directory.

Thisagreat way to handle nested include files and so on
or to try out multiple grammars to see which appearsto
fit the data. Y ou can have something listen on a socket
for multiple input types without knowing which type
will show up when.

The typical main or parser invoker has try-catch around the invocation:

try {
}

cat ch(TokenSt reankException e) {

Systemerr.println("problemw th stream "+e);

}

catch(Recogni ti onException re) {
Systemerr.println("bad input:

http://www.antlr.org/doc/err.html (2 of 5) [8/10/2001 10:46:57 AM]

"+re);

Error Handling and Recovery

}

Lexer rulesthrow Recogni t i onExcept i on, Char St r eanExcept i on, and TokenSt r eanExcepti on.

Parser rulesthrow Recogni ti onExcept i on and TokenSt r eanExcept i on.

Modifying Default Error Messages With Paraphrases

The name or definition of atoken in your lexer israrely meaningful to the user of your recognizer or translator.
For example, instead of seeing

Error: line(l), expecting ID, found ;"

you can have the parser generate:
Error: line(l), expecting an identifier,
found ' ;"'

ANTLR provides an easy way to specify a string to use in place of the token name. In the definition for 1D, use
the paraphrase option:

1D
options {
par aphrase = "an identifier";
}
(‘a2 | PA LT Z)
(‘a'. "z AL Z | T 0 L9)

Note that this paraphrase goes into the token typestext file (ANTLR's persistence file). In other words, a grammar
that uses this vocabulary will also use the paraphrase.

Parser Exception Handling

ANTLR 2.0 generates recursive-descent recognizers. Since recursive-descent recognizers operate by recursively
calling the rule-matching methods, this resultsin a call stack that is populated by the contexts of the
recursive-descent methods. Parser exception handling for grammar rulesis alot like exception handlingin a
language like C++ or Java. Namely, when an exception is thrown, the normal thread of execution is stopped, and
functions on the call stack are exited sequentially until oneis encountered that wants to catch the exception. When
an exception is caught, execution resumes at that point.

In ANTLR 2.0, parser exceptions are thrown when () there is a syntax error, (b) thereis afailed validating
semantic predicate, or () you throw a parser exception from an action.

In al cases, the recursive-descent functions on the call stack are exited until an exception handler is encountered
for that exception type or one of its base classes (in non-object-oriented languages, the hierarchy of execption
types is not implemented by a class hierarchy). Exception handlers arise in one of two ways. First, if you do
nothing, ANTLR will generate a default exception handler for every parser rule. The default exception handler will
report an error, sync to the follow set of the rule, and return from that rule. Second, you may specify your own
exception handlersin avariety of ways, as described later.

If you specify an exception handler for arule, then the default exception handler is not generated for that rule. In
addition, you may control the generation of default exception handlers with a per-grammar or per-rule option.

Specifying Parser Exception-Handlers

Y ou may attach exception handlersto arule, an aternative, or alabeled element. The general form for specifying
an exception handler is:

exception [| abel]

http://www.antlr.org/doc/err.html (3 of 5) [8/10/2001 10:46:57 AM]

Error Handling and Recovery

catch [exceptionType exceptionVari abl e]
{ action }

catch ...

catch ...

where the label is only used for attaching exceptionsto labeled elements. The except i onType isthe exception
(or class of exceptions) to catch, and theexcept i onVar i abl e isthe variable name of the caught exception, so
that the action can process the exception if desired. Here is an example that catches an exception for the rule, for
an alternate and for a labeled element:

rul e: a:ABC
| DE
exception // for alternate
catch [Recogniti onException ex] {
reportError(ex.toString());

o

exception // for rule

catch [Recogniti onException ex] {
reportError(ex.toString());

}

exception[fa] // for a:A

catch [RecognitionException ex] {
reportError(ex.toString());

}

Note that exceptions attached to alternates and |abeled elements do not cause the rule to exit. Matching and control
flow continues asif the error had not occurred. Because of this, you must be careful not to use any variables that
would have been set by a successful match when an exception is caught.

Default Exception Handling in the Lexer

Normally you want the lexer to keep trying to get avalid token upon lexical error. That way, the parser doesn't
have to deal with lexical errors and ask for another token. Sometimes you want exceptions to pop out of the
lexer--usually when you want to abort the entire parsing process upon syntax error. To get ANTLR to generate
lexersthat passon Recogni t i onExcept i on'stothe parser as TokenSt r eanExcept i on's, use the

def aul t Er r or Handl er =f al se grammar option. Note that IO exceptions are passed back as
TokenSt r eam CExcept i on'sregardless of thisoption.

Here is an example that uses a bogus semantic exception (which is a subclass of Recogni ti onExcepti on) to
demonstrate blasting out of the lexer:
cl ass P extends Parser;

{

public static void main(String[] args) {
L I exer = new L(Systemin);
P parser = new P(lexer);

try {

}
catch (Exception e) {

Systemerr.println(e);
}

parser.start();

start : "int" 1D (COWA ID* SEM ;

http://www.antlr.org/doc/err.html (4 of 5) [8/10/2001 10:46:57 AM]

Error Handling and Recovery

class L extends Lexer;
options {

def aul t Err or Handl er =f al se;
}

{int x=1;}

ID : (‘a'.."z")+ ;

SEM : ' ;'
{if (expr)
t hrow new
Semant i cException("test",
get Fi | enanme(),
getLine());} ;
COWA: ', "' ;
W @ (" "|'\n" {newWline();})+

{$set Type(Token. SKI P) ; }

When you typein, say, "i nt b; " you get the following as output:

ant|r. TokenSt reanRecogni ti onExcepti on: test
Version: $Id: //depot/code/org.antlr/release/antlr-2.7.1/doc/err.html#l $

http://www.antlr.org/doc/err.html (5 of 5) [8/10/2001 10:46:57 AM]

ANTLR Specification: Run-time

JGuru
ANTLR

jGuru

Java Runtime Model

Programmer's Interface

In this section, we describe what ANTLR generates after reading your grammar file and
how to use that output to parse input. The classes from which your lexer, token, and
parser classes are derived are provided as well.

What ANTLR generates

ANTLR generates the following types of files, where MyParser, Myl exer, and
MyTreeParser are names of grammar classes specified in the grammar file. Y ou may
have an arbitrary number of parsers, lexers, and tree-parsers per grammar file; a separate
classfilewill be generated for each. In addition, token type files will be generated
containing the token vocabularies used in the parsers and lexers. One or more token
vocabularies may be defined in a grammar file, and shared between different grammars.
For example, given the grammar file:

cl ass MyParser extends Parser;
options {

export Vocab=My;
}

rules ...

cl ass MyLexer extends Lexer;
options {

expor t Vocab=My;
}

rules ...

cl ass MyTreeParser extends TreeParser;
options {

export Vocab=My;
}

rules ...

The following files will be generated:
« MyPar ser. | ava. The parser with member methods for the parser rules.
« MyLexer. | ava. Thelexer with the member methods for the lexical rules.

o MyTreeParser.java. Thetree-parser with the member methods for the
tree-parser rules.

« MyTokenTypes. j ava. Aninterface containing all of the token types defined
by your parsers and lexers using the exported vocabulary named My.

« MyTokenTypes. t xt . A text file containing all of the token types, literals, and
paraphrases defined by parsers and lexers contributing vocabulary My .

http://www.antlr.org/doc/runtime.html (1 of 36) [8/10/2001 10:47:37 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR Specification: Run-time

The programmer uses the classes by referring to them:

1. Create alexical analyzer. The constructor with no arguments implies that you
want to read from standard inpui.

2. Create a parser and attach it to the lexer (or other TokenStream).
3. Call one of the methods in the parser to begin parsing.

If your parser generates an AST, then get the AST value, create atree-parser, and invoke
one of the tree-parser rules using the AST.

MyLexer | ex = new MyLexer();
MyParser p =

new MyPar ser (| ex, user-defined-args-if-any);
p.start-rule();
/1l and, if you are tree parsing the result...
MyTreeParser tp = new MyTreeParser();
tp.start-rul e(p. get AST());

Y ou can aso specify the name of the token and/or AST objects that you want the
lexer/parser to create. Java's support of dynamic programming makes this quite painless:

MyLexer |ex = new MyLexer();
| ex. set TokenOhj ect C ass(" MyToken") ;
/1l defaults to "antlr.ComonToken"

par ser. set ASTNoded ass(" MyASTNode") ;
/| defaults to "antlr.ComobnAST"

The lexer and parser can cause | OExceptions as well as RecognitionExceptions, which
you must catch:

Cal cLexer |exer =

new Cal cLexer (new Dat al nput St rean{Systemin));
Cal cParser parser = new Cal cParser (| exer);
/[l Parse the input expression

try {
par ser. expr();
}

catch (1 OException io) {
Systemerr.println("l OCException");
}

cat ch(Recogni ti onException e) {
Systemerr.println("exception: "+e);
}
Multiple Lexers/Parsers With Shared Input State
Occasionally, you will want two parsers or two lexers to share input state; that is, you

will want them to pull input from the same source token stream or character stream.
The section on multiple lexer "states’ describes such a situation.

http://www.antlr.org/doc/runtime.html (2 of 36) [8/10/2001 10:47:37 AM]

http://www.antlr.org/doc/streams.html#lexerstates

ANTLR Specification: Run-time

ANTLR 2.6.0 factored the input variables such as line number, guessing state, input
stream, etc... into a separate object so that another lexer or parser could same that state.
The Lexer Shar edl nput St at e and Par ser Shar edl nput St at e embody this factoring.
Method get | nput St at e() can be used on either Char Scanner or Par ser objects.
Here is how to construct two lexers sharing the same input stream:

/'l create Java | exer

JavalLexer nmi nLexer = new Javalexer (i nput);

/'l create javadoc |exer; attach to shared

/1 input state of java |exer

JavaDoclLexer docl exer =
new JavaDocLexer (mai nLexer. getl nput State());

Parsers with shared input state can be created similarly:

JavaDocPar ser jdocparser =
new JavaDocPar ser (getlnputState());
j docparser.content(); // go parse the comrent

Sharing state is easy, but what happens upon exception during the execution of the
"subparser"? What about syntactic predicate execution? It turns out that invoking a
subparser with the same input state is exactly the same as calling another rule in the
same parser as far as error handling and syntactic predicate guessing are concerned. |f
the parser is guessing before the call to the subparser, the subparser must continue
guessing, right? Exceptions thrown inside the subparser must exit the subparser and
return to enclosing erro handler or syntactic predicate handler.

Parser Implementation

Parser Class

ANTLR generates a parser class (an extension of LLkPar ser) that contains a method
for every rule in your grammar. The general format |ooks like:

public class M/Parser extends LLkParser
i npl ements MyLexer TokenTypes {
public T(TokenBuffer tokbuf) ({
super (t okbuf);
}

public P(TokenStream | exer) {
thi s(l exer, 1);
}

/'l add your own constructors here...
rul e-definitions

}
Parser Methods

ANTLR generates recursive-descent parsers, therefore, every rule in the grammar will
result in a method that applies the specified grammatical structure to the input token

http://www.antlr.org/doc/runtime.html (3 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time
stream. The general form of a parser method |ooks like:

public void rule()
t hrows Recogniti onExcepti on,
TokenSt r eanExcepti on

{
Init-action-if-present
I f (| ookahead- predicts-production-1) {
code-t o- mat ch- production-1
}

el se if (| ookahead-predicts-production-2) {
code-t o- mat ch- producti on-2
}

éi ée if (| ookahead- predicts-production-n) {
code-t o- mat ch- producti on-n
}

el se {
/'l syntax error
t hrow new NoVi abl eAl t Exception(LT(1));

}
}

This code results from arule of the form:

rul e: production-1
| producti on- 2

. | | production-n
If you have specified arguments and a return type for the rule, the method header
changes to:

/* generated from

* rul e(user-defi ned- args)
* returns return-type : ... ;
*/

public return-type rul e(user-defined-args)
t hrows Recogniti onExcepti on,
TokenSt r eanExcepti on
{

}

Token types are integers and we make heavy use of bit sets and range comparisons to
avoid excessively-long test expressions.

http://www.antlr.org/doc/runtime.html (4 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

EBNF Subrules

Subrules are like unlabeled rules, consequently, the code generated for an EBNF subrule
mirrors that generated for arule. The only difference isinduced by the EBNF subrule
operators that imply optionality or looping.

(...)? optional subrule. The only difference between the code generated for an
optional subrule and aruleisthat thereisno default el se-clause to throw an
exception--the recognition continues on having ignored the optional subrule.

{
Init-action-if-present
I f (| ookahead- predicts-production-1) {
code-t o- mat ch- production-1
}
el se if (| ookahead-predicts-production-2) {
code-t o- mat ch- producti on-2
}
el se if (|ookahead-predicts-production-n) {
code-t o- mat ch- producti on-n
}
}

Not testing the optional paths of optional blocks has the potential to delay the detection
of syntax errors.

(...)* closuresubrule. A closure subruleis like an optional looping subrule,
therefore, we wrap the code for asimple subrule in a"forever" loop that exits whenever
the lookahead is not consistent with any of the alternative productions.

{
Init-action-if-present
| oop:
do {
if (| ookahead- predicts-production-1) {
code-t o- mat ch- producti on-1
}

el se if (|ookahead-predicts-production-2) {
code-t o- mat ch- producti on-2
}

éi ée I f (|1 ookahead-predicts-production-n) {
code-t o- mat ch- producti on-n
}

el se {
break | oop;

}
}

http://www.antlr.org/doc/runtime.html (5 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time
while (true);

While there is no need to explicity test the lookahead for consistency with the exit path,
the grammar analysis phase computes the lookahead of what follows the block. The
lookahead of what follows much be digoint from the lookahead of each aternative
otherwise the loop will not know when to terminate. For example, consider the following
subrule that is nondeterministic upon token A.

(A| B)* A

Upon A, should the loop continue or exit? One must also ask if the loop should even
begin. Because you cannot answer these questions with only one symbol of lookahead,
the decision isnon-LL (1).

Not testing the exit paths of closure loops has the potential to delay the detection of
syntax errors.

Asaspecial case, aclosure subrule with one aternative production resultsin:

{
Init-action-if-present
| oop:
whil e (| ookahead-predicts-production-1) {
code-t o-mat ch- production-1
}

}

This special case resultsin smaller, faster, and more readable code.

(...) + positive closure subrule. A positive closure subrule is aloop around a series
of production prediction tests like a closure subrule. However, we must guarantee that at
least one iteration of the loop is done before proceeding to the construct beyond the
subrule.

{
int cnt = 0;
init-action-if-present
| oop:
do {
i f (| ookahead- predicts-production-1) {
code-t o-mat ch- production-1
}

el se if (|ookahead-predicts-production-2) {
code-t o- mat ch- production- 2
}

el se if (|ookahead-predicts-production-n) {
code-t o- mat ch- producti on-n
}

http://www.antlr.org/doc/runtime.html (6 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

else if (_cnt>1) {
/'l 1 ookahead predicted nothing and we've
/'l done an iteration
break | oop;

}
el se {
t hrow new NoVi abl eAl t Excepti on(LT(1));
}
_cnt++; // track times through the | oop
}
while (true);
}

While there is no need to explicity test the lookahead for consistency with the exit path,
the grammar analysis phase computes the lookahead of what follows the block. The
lookahead of what follows much be digoint from the lookahead of each alternative
otherwise the loop will not know when to terminate. For example, consider the following
subrule that is nondeterministic upon token A.

(Al B)+ A

Upon A, should the loop continue or exit? Because you cannot answer this with only one
symbol of lookahead, the decision isnon-LL(1).

Not testing the exit paths of closure loops has the potential to delay the detection of
syntax errors.

Y ou might ask why we do not have awhi | e loop that teststo seeif the lookahead is
consistent with any of the alternatives (rather than having series of testsinside the loop
with abr eak). It turns out that we can generate smaller code for a series of tests than
one big one. Moreover, the individual tests must be done anyway to distinguish between
alternatives so awhi | e condition would be redundant.

Asaspecia case, if thereisonly one alternative, the following is generated:

{
Init-action-if-present
do {
code-t o- mat ch- production-1
}
whi |l e (| ookahead- predicts-production-1);
}

Optimization. When there are alarge (where large is user-definable) number of strictly
LL (1) prediction alternatives, then aswi t ch-statement can be used rather than a
sequence of i f -statements. The non-LL (1) cases are handled by generating the usual

| f -statementsinthedef aul t case. For example:

switch (LA(1l)) {
case KEY _VH LE :

http://www.antlr.org/doc/runtime.html (7 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

case KEY_ IF :
case KEY_DO :
statenment();
br eak;
case KEY_INT :
case KEY_FLOAT :
decl aration();
br eak;
def aul t
/| do whatever else-clause is appropriate

}

This optimization relies on the compiler building a more direct jump (viajump table or
hash table) to the ith production matching code. Thisis also more readable and faster
than a series of bit set membership tests.

Production Prediction

LL (1) prediction. Any LL(1) prediction test isasimple set membership test. If the set is
asingleton set (a set with only one element), then an integer token type == comparison
isdone. If the set degree is greater than one, a bit set is created and the single input token
type is tested for membership against that set. For example, consider the following rule:

a: A| b;
b: B|] C| D| E| F

The lookahead that predicts production oneis{ A} and the lookahead that predicts
productiontwo is{B, C, D, E, F}. Thefollowing code would be generated by ANTLR
for rule a (dlightly cleaned up for clarity):

public void a() {
if (LA(D)==A) {
mat ch(A) ;

else if (token_setl. menber(LA(1))) {
b();
}
}

The prediction for the first production can be done with a simple integer comparison, but
the second alternative uses a bit set membership test for speed, which you probably
didn't recognize astesting LA(1) nenber {B, C, D, E, F}. The complexity
threshold above which bitset-tests are generated is user-definable.

Weuse arraysof | ong i nt s(64 bits) to hold bit sets. The ith element of abitset is
stored in the word number i / 64 and the bit position within that wordisi % 64. The
divide and modul o operations are extremely expensive and, but fortunately, a strength
reduction can be done. Dividing by a power of two is the same as shifting right and
modulo a power of two is the same as masking with that power minus one. All of these

http://www.antlr.org/doc/runtime.html (8 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

details are hidden inside the implementation of the Bi t Set classin the package
antlr.collections.inpl.

The various bit sets needed by ANTLR are created and initialized in the generated parser
(or lexer) class.

Approximate LL (k) prediction. An extension of LL(1)...basically we do a series of up
to k bit set tests rather than asingle aswe do in LL(1) prediction. Each decision will use
adifferent amount of lookahead, with LL (1) being the dominant decision type.

Production Element Recognition

Token references. Token references are trand ated to:

mat ch(t oken-type);

For example, areference to token KEY _BEQ Nresultsin:

mat ch(KEY_BEG N) ;

where KEY BEQ Nwill be an integer constant defined in the MyPar ser TokenType
interface generated by ANTLR.

String literal references. String literal references are references to automatically
generated tokens to which ANTLR automatically assigns a token type (one for each
unique string). String references are translated to:

mat ch(T);

where T isthe token type assigned by ANTLR to that token.

Character literal references. Referencing a character literal implies that the current rule
Isalexical rule. Single characters, 't', are translated to:

match('t');

which can be manually inlined with:

if (c=="t') consume();
el se throw new M smat chedChar Excepti on(
"m smat ched char: '"+(char)c+"'");

if the method call proves slow (at the cost of space).

Wildcard references. In lexical rules, the wildcard is trand ated to:

consune();
which simply gets the next character of input without doing a test.

References to the wildcard in a parser rule results in the same thing except that the

http://www.antlr.org/doc/runtime.html (9 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time
consune call will be with respect to the parser.

Not operator. When operating on atoken, ~T istrandlated to:

mat chNot (T) ;

When operating on a character literal,' t ' istrandated to:

mat chNot ("t');

Range operator. In parser rules, the range operator (T1. . T2) istranslated to:

mat chRange(T1, T2);

In alexical rule, the range operator for characterscl. . c2 istrandated to:

mat chRange(cl, c2);

L abels. Element |abels on atom references become Token referencesin parser rules and
I nt sinlexical rules. For example, the parser rule:

a: id:ID{Systemout.println("idis "+id);} ;
would be trandlated to:

public void a() {
Token id = null;
id = LT(1);
mat ch(I D) ;
Systemout.println("id is "+id);
}

For lexical rules such as;

ID: w. {Systemout.println("wis "+(char)w);};
the following code would result:

public void ID() {
int w= 0;
W = C;
consune(); // match w ldcard (anything)
Systemout.println("wis "+(char)w);

}

Labels on rule references result in AST references, when generating trees, of the form
| abel ast.

Rulereferences. Rule references become method calls. Arguments to rules become
arguments to the invoked methods. Return values are assigned like Java assignments.
Consider rulereferencei =l i st[1] torule

http://www.antlr.org/doc/runtime.html (10 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

list[int scope] returns int
{ return scope+3; }

The rule reference would be trand ated to:

i = list(1);

Semantic actions. Actions are translated verbatim to the output parser or lexer except
for the tranglations required for AST generation.

To add membersto alexer or parser class definition, add the class member definitions
enclosed in {} immediately following the class specification, for example:

cl ass MyPar ser;

{

protected int i;

public MyParser (TokenStream | exer,

I nt aUseful Argunent) {
i = aUsef ul Argunent ;

}
}
... rules ...

ANTLR collects everything inside the { ...} and insertsit in the class definition before the
rule-method definitions. When generating C++, this may have to be extended to allow
actions after the rules due to the wacky ordering restrictions of C++.

Semantic predicates.

Standard Classes

ANTLR constructs parser classes that are subclasses of theant | r. LLkPar ser class,
whichisasubclassof theant | r. Par ser class. We summarize the more important
members of these classes here. See Parser.java and LLKParser.javafor details of the
implementation.

public abstract class Parser {
prot ect ed Par ser Shar edl nput St at e i nput St at e;
prot ected ASTFactory ASTFactory;
public abstract int LA(int i);

publ i c abstract Token LT(int i);
public abstract void consune();
public void consuneuntil (BitSet set) { ... }
public void consuneuntil (int tokenType) { ... }
public void match(int t)

t hrows M smat chedTokenException { ... }

public void matchNot (int t)

http://www.antlr.org/doc/runtime.html (11 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

}

t hrows M smat chedTokenException { ... }

public class LLkParser extends Parser {

}

public LLkParser(TokenBuffer tokenBuf, int k)

{ ...}
public LLkParser(TokenStream |l exer, int k)
{ ...}

public int LA(int i) { return input.LA(i); }
public Token LT(int i) { return input.LT(i); }
public void consune() { input.consune(); }

Lexer Implementation

Lexer Form

The lexers produced by ANTLR 2.0 are alot like the parsers produced by ANTLR 2.0.
They only major differences are that (a) scanners use characters instead of tokens, and
(b) ANTLR generates a special next Token rule for each scanner which is a production
containing each public lexer rule as an aternate. The name of the lexical grammar class
provided by the programmer resultsin a subclass of Char Scanner , for example

public class M/Lexer extends Char Scanner

}

i nmpl ements MyTokenTypes {
public MyLexer() {
this(Systemin);

}

public MyLexer (I nputStreamin) {
super (i n);

}

public Token next Token() {
scanning | ogic

}

recursive and other non-inlined | exical nethods

When an ANTLR-generated parser needs another token from its lexer, it calls a method
called next Token. The general form of the next Token method is:

publ i c Token next Token()

t hrows TokenStreanException {
int tt;

http://www.antlr.org/doc/runtime.html (12 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

for (;;) {
try {

reset Text ();

switch (¢) {

case for each char predicting |exica
call lexica

defaul t :
t hrow new NoVi abl eAl t For Char Excepti on(

"bad char: '"+(char)c+""'");

rul e
rule gets token type -> tt

}
if (tt!=Token.SKIP) {

return makeToken(tt);
}
}

catch (RecognitionException ex) {
reportError(ex.toString());
}

}
}

For example, the lexical rules:

| excl ass Lex;

W5 ("\t" | *\r* | " ") {_ttype=Token. SKIP;} ;
PLUS : '+';

MNUS: *'-";

| NT ('0".."9")+ ;

| D ('a.."z")+ ;

U D ; ("A.."Z)+ ;
would result in something like:

public class Lex extends Char Scanner
I npl ements TTokenTypes {

publ i c Token next Token()
t hrows TokenStreanException {
int tt = Token. EOF_TYPE;
for (;;) {
try {
reset Text ();
switch (_c) {

case '\t': case '\r': case
_tt=mAB() ;
br eak;
case ' +':
_tt=nmPLUS();
br eak;

http://www.antlr.org/doc/runtime.html (13 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

case ' -
_tt=mM NUS();
br eak;
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9':

_tt=m NT();

br eak;
case 'a': case 'b': case 'c': case 'd
case 'e': case 'f': case 'g': case 'h
case 'i': case '|j': case 'k': case 'l
case 'm: case 'n': case '0': case 'p
case '(q': case 'r': case 's': case 't'
case 'u': case 'v': case 'wW: case 'X
case 'y':. case 'Zz'

_tt=mIX);

br eak;

case 'A' . case 'B: case 'C case 'D:
case 'E': case 'F': case 'G case
case '|l': case 'J': case 'K': case 'L':
case 'M: case 'N: case 'O : case 'P':
case 'Q: case 'R : case 'S : case 'T':
case 'U : case 'V : case 'W: case 'X:
case 'Y': case 'Z':
_tt=r () ;
br eak;
case EOF_CHAR :
_tt = Token. EOF_TYPE;
br eak;
defaul t :
t hr ow new NoVi abl eAl t For Char Excepti on(
“invalid char "+ _c);
}
if (_tt!=Token.SKIP) {
return makeToken(tt);
}

Y oIl otry
catch (RecognitionException ex) {
reportError(ex.toString());

}
} I/ for

}

public int mMAS()
t hrows Recogniti onExcepti on,
Char St r eanExcepti on,
TokenSt reanExcepti on {
int ttype = W5

http://www.antlr.org/doc/runtime.html (14 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time
swtch (_c) {

case '"\t':
match('\t');
break;

case '\r':
match('\r");
br eak;

case ' ':
match(' ');
br eak;

def aul t

{

t hr ow new NoVi abl eAl t For Excepti on(
“no viable for char: "+(char) _c);

}

}
_ttype = Token. SKI P;

return _ttype;

}

public int nmPLUS()

t hrows Recogni ti onExcepti on,
Char St r eanExcepti on,
TokenSt r eanExcepti on {

int ttype = PLUS;

mat ch(' +');

return _ttype;

}

public int nmM NUS()
t hrows Recogni ti onExcepti on,
Char St r eanExcepti on,
TokenSt reanExcepti on {

int _ttype = M NUS;
match('-"');
return _ttype;

}

public int m NT()
t hrows Recogni ti onExcepti on,
Char St r eanExcepti on,
TokenSt r eanExcepti on {

int _ttype = | NT;
{

int _cnt=0;
_| oop:

http://www.antlr.org/doc/runtime.html (15 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

do {

if (_c>="0 && c<='9")

{ matchRange('0',"9"); }

el se

if (_cnt>=1) break _I|oop;

el se {

t hrow new Scanner Excepti on(
"no viable alternative for char: "+
(char) _c);

}

_cnt ++;
} while (true);
}

return _ttype;

}

public int nmD()
t hrows Recogniti onExcepti on,
Char St r eanExcepti on,
TokenSt r eanExcepti on {
int _ttype = ID

{
int _cnt=0;
_| oop:
do {
if (_c>="a && c<='27")
{ matchRange('a',"'z'); }
el se
If (_cnt>=1) break _|oop;
el se {
t hr ow new NoVi abl eAl t For Char Excepti on(
"no viable alternative for char: "+
(char) c);
}
_cnt ++;
} while (true);
}

return _ttype;

}

public int mJ IX)
t hrows Recogni ti onExcepti on,
Char St r eanExcepti on,
TokenSt reanExcepti on {

int ttype = U D
{

int _cnt=0;

http://www.antlr.org/doc/runtime.html (16 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

_| oop:
do {
if (_c>="A && c<='27")
{ matchRange('A ,"'Z"); }
el se
if (_cnt>=1) break _I|oop;
el se {
t hrow new NoVi abl eAl t For Char Excepti on(
"no viable alternative for char: "+

(char) _c);
}
_cnt ++;
} while (true);
}
return _ttype;
}
}

ANTLR-generated lexers assume that you will be reading streams of characters. If thisis
not the case, you must create your own lexer.

Creating Your Own Lexer

To create your own lexer, your Java class that will doing the lexing must implement
interface TokenSt r eam which simply states that you must be able to return a stream
of tokensvianext Token:

/**This interface allows any object to
* pretend it is a stream of tokens.
* @ut hor Terence Parr, MagelLang Institute
*/
public interface TokenStream {
publ i ¢ Token next Token();

}

ANTLR will not generate a lexer if you do not specify alexical class.
Launching a parser with a non-ANTLR-generated lexer is the same as launching a parser
with an ANTLR-generated lexer:

HandBui | t Lexer | ex = new HandBuiltLexer(...);
MyParser p = new MyParser (| ex);
p.start-rule();

The parser does not care what kind of object you use for scanning as aslong asit can
answer next Token.

If you build your own lexer, and the token values are also generated by that lexer, then
you should inform the ANTLR-generated parsers about the token type values generated

http://www.antlr.org/doc/runtime.html (17 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

by that lexer. Use the importV ocab in the parsers that use the externally-generated token

set, and create a token definition file following the requirements of the importV ocab
option.

Lexical Rules

Lexical rules are essentially the same as parser rules except that lexical rules apply a
structure to a series of characters rather than a series of tokens. Aswith parser rules, each
lexical rule results in amethod in the output lexer class.

Alternative blocks. Consider asimple series of alternatives within a block:

FORMAT @ '"x'" | '"f'" | '"d';

The lexer would contain the following method:

public int nFORVAT() {
if (c=="x") {
mat ch(' x');

else if (c=="x") {

mat ch(' x');
else if (c=="f") {
match('f');
}
else if (c=="d) {
match('d');
}
el se {
t hr ow new NoVi abl eAl t For Char Excepti on(
"no viable alternative: '"+(char)c+"'");
}
return FORVAT,;

}

The only real differences between lexical methods and grammar methods are that
lookahead prediction expressions do character comparisons rather than LA(i)
comparisons, mat ch matches charactersinstead of tokens, ar et ur n isadded to the
bottom of the rule, and lexical methods throw Char St r eanExcept i on objectsin
additionto TokenSt r eanExcept i on and Recogni ti onExcept i on objects.

Optimization: Non-Recursive lexical rules. Rulesthat do not directly or indirectly call
themselves can be inlined into the lexer entry method: next Token. For example, the
common identifier rule would be placed directly into the next Token method. That is,
rule:

ID ('a.."z" | "A.."Z)+

http://www.antlr.org/doc/runtime.html (18 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

would not result in amethod in your lexer class. This rule would become part of the
resulting lexer asit would be probably inlined by ANTLR:

publi ¢ Token next Token() {
swwtch (¢) {
cases for operators and such here
case '0': // chars that predict |ID token
case '1':
case '2':
case '3
case '4
case '5':
case '6':
case '7
case '8
case '9':
while (c>="0" && c<='9") {
mat chRange(' 0',"' 9");
}

return makeToken(ID);
def aul t
check harder stuff here |ike rules
beginning with a..z

}

If not inlined, the method for scanning identifiers would look like:

public int mD() {
while (c>=' 0" & c<='9") {
mat chRange(' 0',' 9');
}

return | D

}

where token names are converted to method names by prefixing them with the letter m
The next Token method would become:

publ i ¢ Token next Token() {
switch (¢) {
cases for operators and such here
case '0': // chars that predict |ID token

case '1':
case '2':
case '3':
case '4'

case '5H':
case '6':
case '7':

http://www.antlr.org/doc/runtime.html (19 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time
case '8':
case '9':
return makeToken(m X)) ;
defaul t
check harder stuff here like rules
beginning with a..z

}
Note that this type of range loop is so common that it should probably be optimized to:

while (c>=' 0" &% c<='9") {
consune();

}

Optimization: Recursive lexical rules. Lexical rulesthat are directly or indirectly
recursive are not inlined. For example, consider the following rule that matches nested
actions:

ACTI ON
U (ACTION|)ty

ACTI ONwould be result in (assuming a character vocabulary of 'a..'z', '{', }"):

public int mACTI ON()
t hrows Recogni ti onExcepti on,
Char St r eanExcepti on,
TokenSt r eanException {

int _ttype = ACTI ON;

match(' {');
{
_| oop:
do {
switch (_c) {
case '{':
mACTI ON() ;
br eak;
case 'a': case 'b': case 'c': case 'd':
case 'e': case 'f': case 'g': case 'h'
case 'i': case ']j': case 'k': case 'l
case 'm: case 'n': case '0': case 'p
case '(q': case 'r': case 's': case 't'
case 'u': case 'v': case 'w: case 'x'
case 'y':. case 'Zz'
mat chNot (' }');
br eak;
def aul t

break | oop;

http://www.antlr.org/doc/runtime.html (20 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

}
} while (true);
}
match('}"');

return _ttype;

}
Token Objects

The basic token knows only about atoken type:

public class Token {
/'l constants
public static final int MN USER TYPE = 3;
public static final int | NVALID TYPE = O;
public static final int EOF_TYPE = 1,
public static final int SKIP = -1;

/'l each Token has at |east a token type
i nt type=I NVALI D_TYPE;

/1l the illegal token object
public static Token badToken =
new Token(| NVALI D TYPE, "");

public Token() {;}

public Token(int t) { type =1t; }

public Token(int t, String txt) {
type = t; setText(txt);

}

public void setType(int t) { type =1t; }
public void setLine(int |) {;}

public void setColum(int c) {;}

public void setText(String t) {;}

public int getType() { return type; }
public int getLine() { return O; }
public int getColum() { return O; }
public String getText() {...}

}

Theraw Token classisnot very useful. ANTLR suppliesa"common" token class that
it uses by default, which contains the line number and text associated with the token:

public class CommbnToken extends Token {
/1 nost tokens wll want line, text infornmation
int |ine;
String text = null;

http://www.antlr.org/doc/runtime.html (21 of 36) [8/10/2001 10:47:37 AM]

ANTLR Specification: Run-time

publ i ¢ CommonToken() {}
publ i c CommonToken(String s) { text =s; }
publ i c CommonToken(int t, String txt) {

type = t;

set Text (txt);
}
public void setLine(int I) { line =1; }
public int getlLine() { return line; }
public void setText(String s) { text = s; }
public String getText() { return text; }

}

ANTLR will generate an interface that defines the types of tokens in atoken vocabulary.
Parser and lexers that share this token vocabulary are generated such that they
implement the resulting token types interface:

public interface MyLexer TokenTypes {
public static final int ID = 2;
public static final int BEGAN = 3;

}

ANTLR defines atoken object for use with the TokenSt r eanHi ddenTokenFi | t er
object called ConmonHi ddenSt r eanToken:

public class CommonH ddenStreanilfoken
ext ends CommonToken {
prot ected CommonHi ddenSt r eanToken hi ddenBef or e;
prot ected CommonHi ddenSt r eamToken hi ddenAft er;

publ i ¢ ComonH ddenSt r eanifoken
get Hi ddenAfter() {...}

publ i ¢ ComonH ddenSt r eanifoken
get Hi ddenBefore() {...}

}

Hidden tokens are weaved amongst the normal tokens. Note that, for garbage collection
reasons, hidden tokens never point back to normal tokens (preventing alinked list of the
entire token stream).

Token Lookahead Buffer

The parser must always have fast access to k symbols of lookahead. In aworld without
syntactic predicates, a simple buffer of k Token references would suffice. However,
given that even LL(1) ANTLR parsers must be able to backtrack, an arbitrarily-large
buffer of Token references must be maintained. LT(1) looksinto the token buffer.

Fortunately, the parser itself does not implement the token-buffering and lookahead

http://www.antlr.org/doc/runtime.html (22 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

algorithm. That is handled by the TokenBuf f er object. We begin the discussion of
lookahead by providing an LL (k) parser framework:

public class LLkParser extends Parser ({
TokenBuffer input;
public int LA(int i) {
return input.LA(i);
}

public Token LT(int i) {
return input.LT(i);
}

public void consunme() ({
i nput . consune();
}

}

All lookahead-related calls are smply forwarded to the TokenBuf f er object. Inthe
future, some simple caching may be performed in the parser itself to avoid the extra
indirection, or ANTLR may generate the call to input.LT(i) directly.

The TokenBuf f er object caches the token stream emitted by the scanner. It supplies
LT() and LA() methods for accessing the kth |ookahead token or token type, as well as
methods for consuming tokens, guessing, and backtracking.

public class TokenBuffer {

};; Mar k anot her token for
* deferred consunption */
public final void consune() {...}

/** Get a | ookahead token */
public final Token LT(int i) { ... }

[** Get a | ookahead token val ue */
public final int LA(int i) { ... }

/[**Return an integer marker that can be used to
*rewind the buffer toits current state. */
public final int mark() { ... }

[**Rewi nd the token buffer to a marker.*/
public final void rewind(int mark) { ... }

}

To begin backtracking, amar k isissued, which makesthe TokenBuf f er record the
current position so that it can rewind the token stream. A subsequent r ewi nd directive
will reset the internal state to the point before the last mar k.

Consider the following rule that employs backtracking:

http://www.antlr.org/doc/runtime.html (23 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

stat: (list EQUAL) => |ist EQUAL |i st
| | i st

list: LPAREN (I D)* RPAREN

Something like the following code would be generated:

public void stat()
t hrows Recogniti onExcepti on,
TokenSt r eanExcepti on

{
bool ean synPredFai l ed,;
If (LA(1)==LPAREN) { // check | ookahead
int marker = tokenBuffer. mrk();
try {
list();
mat ch(EQUAL) ;
synPredFai |l ed = fal se;

}

catch (Recogniti onException e) {
t okenBuf f er. rew nd(marker);
synPredFai l ed = true;

}

}

I f (LA(1l)==LPAREN && !synPredFailed) {
/]l test prediction of alt 1
list();
mat ch(EQUAL) ;
list();

}

else if (LA(1l)==LPAREN) {
list();

}

}

The token lookahead buffer uses a circular token buffer to perform quick indexed access
to the lookahead tokens. The circular buffer is expanded as necessary to calculate LT(i)
for arbitrary i. TokenBuf f er . consune() doesnot actually read more tokens.
Instead, it defers the read by counting how many tokens have been consumed, and then
adjusts the token buffer and/or reads new tokenswhen LA() or LT() iscalled.

Version: $ld: //depot/code/org.antlr/test/antlr-2.7.0al1l/doc/runtime.html#3 $

http://www.antlr.org/doc/runtime.html (24 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (25 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (26 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (27 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (28 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (29 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (30 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (31 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (32 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (33 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (34 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (35 of 36) [8/10/2001 10:47:38 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/runtime.html (36 of 36) [8/10/2001 10:47:38 AM]

C++ Notes

C++ Notes

. The C++ runtime and generated grammars look very much the same as the java ones. There are some subtle differences
JGuru though, but more on this later.

AR Building the runtime

jGuru
The runtime files are located in the lib/cpp subdirectory of the ANTLR distribution. Thisrelease isthefirst to include
preliminary automake/autoconf support. Building it isin genera done by doing the following:

./configure --prefix=/usr/l ocal
make

Installing the runtime is done by typing

make install
Thisinstalls the runtime library libantlr.ain /usr/local/lib and the header filesin /usr/local/include/antlr.

Using the runtime

Generaly you will compile the ANTLR generated files with something similar to:

c++ -c MyParser.cpp -I1/usr/local/include
Linking is done with something similar to:

c++ -0 MyExec <your .o files> -L/usr/local/lib -lantlr

Getting ANTLR to generate C++

To get ANTLR to generate C++ code you have to add

| anguage="Cpp";
to the global options section. After that things are pretty much the same asin java mode except that aall token and AST
classes are wrapped by areference counting class (thisto make live easier). The reference counting class uses

oper at or - >

to reference the object it iswrapping. As aresult of thisyou use -> in C++ mode in stead of the " of java. Seethe
examples in examples/c++ for some illustrations.

Using Custom AST types

In C++ modeit is also possible to override the AST type used by the code generated by ANTLR. To do this you have to
do the following:

« Define acustom AST class like the following:

#i ncl ude <ant!r/ CormonAST. hpp>
t ypedef antlr:: ASTRef Count <My _AST> Ref WAST,;

class MYAST : public antlr:: ComoDnAST {

http://www.antlr.org/doc/cpp-runtime.html (1 of 30) [8/10/2001 10:48:05 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

C++ Notes

publi c:

MyAST(void) : down(), right()

{

}

~MyAST(void)

{

}

void initialize(antlr:: RefToken t)

{
antlr:: CommonAST: :initialize(t);
/] more stuff....
11/

}

void initialize(int t,const ANTLR USE NAMESPACE(std)string& txt)

{
set Type(t);
set Text (txt);

}
voi d addChil d(Ref My_AST c)

{
antlr::BaseAST::addChil d(static_cast<antlr::Ref AST>(c));

}

static antlr::Ref AST factory(void)

{
antlr::Ref AST ret = static_cast<antlr::Ref AST>(Ref MWAST(new MyAST)) ;
return ret;

}

private:
Ref MyAST down; /1l are these really necessary...

Ref MYAST ri ght;
b
Tell ANTLR's C++ codegenerator to use your RefMyAST by including the following in the options section:

ASTLabel Type = "Ref MAST";

After that you only need to tell the parser before every invocation of a new instance that it should use the AST
factory defined in your class. Thisisdone like this:

My _Parser parser (| exer);

par ser. set ASTNodeFactory(M/AST: :factory);

If you do not do this only CommonAST objects get created and used asif they were MyAST's. (In future versions
this might be done automatically) Now al ANTLR generated code uses RefMyAST/MyAST astype. Asaresult
you can access extra members and methods without typecasting.

Using Heterogeneous AST types

Thisislargely untested. Small examples seem to work. Functionality from duptree and the likes will not work, this may
be fixed in the next release, in general inspection of the trees will work, transformations 90% sure not.. Basically follow
the javainstructions and look at the generated code. If someone would be willing to share some experiences?

A template grammar file for C++

header "pre_include_hpp" {

}

/'l gets inserted before antlr generated includes in the header file

http://www.antlr.org/doc/cpp-runtime.html (2 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

header "post _include_hpp" {

/1l gets inserted after antlr generated includes in the header file
/1l outside any generated nanmespace specifications

}

header "pre_include_cpp" {

/'l gets inserted after the antlr generated includes in the cpp file

}

header "post _include_cpp" {

/1l gets inserted after the antlr generated includes in the cpp file

}

/'l gets inserted after generated nanespace specifications in the header

encapsul ate code in this namespace
cosnetic option to get rid of |ong defines
i n generated code

cosnmetic option to get rid of |Iong defines
i n generated code

generated #line's or turn it off.

header {
/1 file. But outside the generated class.
}
options {
| anguage="Cpp";
namespace="sonet hi ng"; /1
/'l nanespaceSt d="std"; 11
11
/1 namespaceAntlr="antlr"; I
I
genHashLi nes = true; /1
}

/1 global stuff in the cpp file

cl ass MyParser extends Parser;
options {
export Vocab=My;

}
{
/] additional nethods and nenbers
}
... rules ...
/'l global stuff in the cpp file
}
cl ass MyLexer extends Lexer;
options {
export Vocab=My;
}
{
// additional nethods and nenbers
}
... rules ...
{

/1 global stuff in the cpp file

http://www.antlr.org/doc/cpp-runtime.html (3 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

cl ass MyTreeParser extends TreeParser;
options {
export Vocab=My;
}
{

// additional nmethods and nenbers

rules ...

Version: $ld: //depot/code/org.antlr/release/antlr-2.7.1/doc/cpp-runtime.html#3 $

http://www.antlr.org/doc/cpp-runtime.html (4 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (5 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (6 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (7 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (8 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (9 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (10 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (11 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (12 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (13 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (14 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (15 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (16 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (17 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (18 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (19 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (20 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (21 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (22 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (23 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (24 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (25 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (26 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (27 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (28 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (29 of 30) [8/10/2001 10:48:05 AM]

C++ Notes

http://www.antlr.org/doc/cpp-runtime.html (30 of 30) [8/10/2001 10:48:05 AM]

ANTLR Specification: Run-time

</

Sather Runtime Model

jGuruProgrammer's Interface

ANTLR

jGuru

In this section, we describe what ANTLR generates after reading your grammar file and how to use that output to parse input.
The classes from which your lexer, token, and parser classes are derived are provided as well.

What ANTLR generates

ANTLR generates the following types of files, where MY_PARSER, MY_LEXER, and MY_TREE_PARSER are names of
grammar classes specified in the grammar file. Y ou may have an arbitrary number of parsers, lexers, and tree-parsers per
grammar file; a separate class file will be generated for each. In addition, token type files will be generated containing the
token vocabularies used in the parsers and lexers. One or more token vocabularies may be defined in a grammar file, and
shared between different grammars. For example, given the grammar file:
options {

| anguage="Sat her";

}
cl ass MyParser extends Parser;
options {
export Vocab=My;
}

rules ...

cl ass MY_LEXER extends Lexer;
options {

export Vocab=M;
}

rules ...

cl ass MY_TREE PARSER ext ends TreeParser;
options {

export Vocab=My;
}

rules ...

The following files will be generated:
o MY_PARSER. sa. The parser with member methods for the parser rules.
« MY_LEXER. sa. Thelexer with the member methods for the lexical rules.
« MY_TREE_PARSER. sa. The tree-parser with the member methods for the tree-parser rules.

o IMY_TOKENTYPES. sa. Aninterface containing all of the token types defined by your parsers and lexers using the
exported vocabulary named M.

« IMY_TokenTypes. t xt . A text file containing al of the token types, literals, and paraphrases defined by parsers and
lexers contributing vocabulary M.

The programmer uses the classes by referring to them:
1. Create alexical analyzer.
2. Create a parser and attach it to the lexer (or another SANTLR_TOKEN_STREAM).
3. Call one of the methods in the parser to begin parsing.
If your parser generates an AST, then get the AST value, create a tree-parser, and invoke one of the tree-parser rules using the
AST.
lex ::= #MY_LEXER{ ANTLR COMVON TOKEN}(file_stream);
parser ::= MY_PARSER{ ANTLR_COVMON_TOKEN, ANTLR_COMMON_AST} (| ex,
user-defined-args-if-any);
parser.start-rule;

http://www.antlr.org/doc/sa-runtime.html (1 of 29) [8/10/2001 10:48:53 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR Specification: Run-time

-- and, if you are tree parsing the result...
tree_parser ::= #MY_TREE_PARSER{ ANTLR_COMMON_AST};
tree_parser.start-rul e(parser.ast);

The lexer and parser can cause exceptions of type SANTLR_RECOGNITION_EXCEPTIONS, which you may catch:

| exer ::= #CALC LEXER{ ANTLR_ COMMON TOKEN}(file_stream);

parser ::= #CALC_PARSER{ ANTLR_COVMON_TOKEN, ANTLR_COMMON_AST} (| exer);
-- Parse the input expression

pr ot ect

par ser. expr;
when $ANTLR _RECOGNI TI ON_EXCEPTI ON

#ERR + exception.str + "\n";
end;

Multiple Lexers/Parsers With Shared Input State

Occasionaly, you will want two parsers or two lexers to share input state; that is, you will want them to pull input from the
same source token stream or character stream.

ANTLR 2.6.0 factored the input variables such as line number, guessing state, input stream, etc... into a separate object so that
another lexer or parser could samethat state. The ANTLR_LEXER SHARED | NPUT_STATE and
ANTLR_PARSER_SHARED | NPUT_STATE embody thisfactoring. Attributei nput _st at e can be used on either
ANTLR_CHAR_SCANNER or ANTLR_PARSER objects. Hereis how to construct two lexers sharing the same input stream:
-- create a Java | exer

mai n_l exer ::= #JAVA LEXER{ ANTLR COVMON TOKEN} (i nput);

-- create javadoc | exer

-- attach to shared input state of java | exer

docl exer ::= #JAVADOC LEXER{ ANTLR COMMON _TOKEN} (nmi n_| exer.input_state);

Parsers with shared input state can be created similarly:

j docparser ::= #JAVA DOC_PARSER{ ANTLR_COVWON_TOKEN, ANTLR_COMMON_AST}(input_state);
j docparser.content; -- go parse the conment

Sharing state is easy, but what happens upon exception during the execution of the "subparser"? What about syntactic
predicate execution? It turns out that invoking a subparser with the same input state is exactly the same as calling another rule
in the same parser as far as error handling and syntactic predicate guessing are concerned. If the parser is guessing before the
call to the subparser, the subparser must continue guessing, right? Exceptions thrown inside the subparser must exit the
subparser and return to enclosing erro handler or syntactic predicate handler.

Parser Implementation

Parser Class

ANTLR generates a parser class (an extension of ANTLR_LLKPARSER) that contains a method for every rulein your
grammar. The general format looks like:

class MY_PARSER{ TOKEN < $ANTLR TOKEN, AST < $ANTLR AST{AST} } is

i ncl ude ANTLR _LLKPARSER{ TOKEN, AST } create -> super_create;
i ncl ude CALC _PARSER TOKENTYPES;

create (token_buf : ANTLR TOKEN BUFFER{TOKEN} , k : INT) : SAME is
res : SAME : = super_create(token_ buf, k);
res.token_nanes := sa_token_nanes;
return res;

end;

create (token_buf : ANTLR TOKEN BUFFER{ TOKEN}) : SAME i s

return #SAME(token_buf, 1);
end;

http://www.antlr.org/doc/sa-runtime.html (2 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

create (lexer : $ANTLR TOKEN STREAMTOKEN} , k : INT) : SAME is

res : SAME : = super_create(lexer, k);
res.token_names := sa_token_nanes;
return res;

end;

create(lexer : $ANTLR TOKEN STREAM TOKEN}) : SAME is
res : SAME : = #SAME(| exer, 1);
return res;

end;

create (state : ANTLR PARSER SHARED | NPUT_STATE{ TOKEN}) : SAME is

res : SAME : = super_create(state, 1l);
res.token_nanes := sa_token_nanes;
return res;

end;

-- add your own constructors here...
rul e-definitions
end;

Parser Methods

ANTLR generates recursive-descent parsers, therefore, every rule in the grammar will result in a method that applies the
specified grammatical structure to the input token stream. The general form of a parser method looks like:

rule is
init-action-if-present
if (|ookahead-predicts-production-1) then
code-t o- mat ch- production-1
el sif (| ookahead-predicts-production-2) then
code-t o- mat ch- producti on- 2

el sif (| ookahead- predicts-production-n) then
code-t o- mat ch- producti on-n
el se
-- syntax error
rai se #ANTLR_NO VI ABLE_ALT_EXCEPTI ON(LT(1));
end;
end;

This code results from arule of the form:

rul e: production-1
| production-2

| production-n

If you have specified arguments and areturn type for the rule, the method header changes to:

(* generated from

* rul e(user-defined-args)
* returns return-type : ... ;
*)

rul e(user-defined-args) : return-type is
end;

Token types are integers and we make heavy use of sets and range comparisons to avoid excessively-long test expressions.

http://www.antlr.org/doc/sa-runtime.html (3 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

EBNF Subrules

Subrules are like unlabeled rules, consequently, the code generated for an EBNF subrule mirrors that generated for arule. The
only difference isinduced by the EBNF subrule operators that imply optionality or looping.

(...)? optional subrule. The only difference between the code generated for an optional subrule and arule isthat thereis
no default el se-clause to throw an exception--the recognition continues on having ignored the optional subrule.

init-action-if-present
i f (| ookahead-predicts-production-1) then
code-t o- mat ch- production-1

el sif (| ookahead- predicts-production-2) then
code-t o- mat ch- producti on- 2

el sif (| ookahead-predicts-production-n) then
code-t o- mat ch- producti on-n
end;

Not testing the optional paths of optional blocks has the potential to delay the detection of syntax errors.
(...)* closuresubrule. A closure subruleislike an optional looping subrule, therefore, we wrap the code for asimple
subrulein a"forever" loop that exits whenever the lookahead is not consistent with any of the alternative productions.

init-action-if-present
| oop
if (|ookahead- predicts-production-1) then
code-t o- mat ch- production-1

el sif (| ookahead-predicts-production-2) then
code-t o- mat ch- producti on-2

el sif (| ookahead-predicts-production-n) then
code-t o- mat ch- production-n

el se
br eak! ;

end;
end;

While there is no need to explicity test the lookahead for consistency with the exit path, the grammar analysis phase computes
the lookahead of what follows the block. The lookahead of what follows much be disjoint from the lookahead of each

aternative otherwise the loop will not know when to terminate. For example, consider the following subrule that is
nondeterministic upon token A.

(Al B)* A

Upon A, should the loop continue or exit? One must also ask if the loop should even begin. Because you cannot answer these
guestions with only one symbol of lookahead, the decision isnon-LL(1).

Not testing the exit paths of closure loops has the potential to delay the detection of syntax errors.
Asaspecia case, aclosure subrule with one alternative production resultsin:
init-action-if-present
| oop whil e!(| ookahead- predicts-production-1);

code-t o- mat ch- production-1
end;

This special case resultsin smaller, faster, and more readabl e code.

http://www.antlr.org/doc/sa-runtime.html (4 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

(...)+ positive closure subrule. A positive closure subrule is aloop around a series of production prediction tests like a
closure subrule. However, we must guarantee that at least one iteration of the loop is done before proceeding to the construct
beyond the subrule.

sa cnt : INT := 0;
init-action-if-present
| oop

if (lookahead- predicts-production-1) then
code-t o- mat ch- production-1

el sif (| ookahead-predicts-production-2) then
code-t o- mat ch- producti on-2

el sif (| ookahead- predicts-production-n) then
code-t o- mat ch- producti on-n

elsif (sa_cnt>1) then
-- | ookahead predicted nothing and we've
-- done an iteration
br eak! ;

el se
rai se #ANTLR_NO VI ABLE ALT_EXCEPTI ON(LT(1));

end,
sa cnt :=sa cnt + 1; -- track times through the | oop

end;

While there is no need to explicity test the lookahead for consistency with the exit path, the grammar analysis phase computes
the lookahead of what follows the block. The lookahead of what follows much be digjoint from the lookahead of each
aternative otherwise the loop will not know when to terminate. For example, consider the following subrule that is
nondeterministic upon token A.

(A] B)+ A

Upon A, should the loop continue or exit? Because you cannot answer this with only one symbol of lookahead, the decision is
non-LL(1).

Not testing the exit paths of closure |oops has the potential to delay the detection of syntax errors.

Y ou might ask why we do not have awhi | e loop that tests to seeif the lookahead is consistent with any of the alternatives
(rather than having series of testsinside the loop with abr eak). It turns out that we can generate smaller code for a series of
tests than one big one. Moreover, the individual tests must be done anyway to distinguish between alternativesso awhi | e
condition would be redundant.

Asaspecia case, if thereisonly one aternative, the following is generated:

init-action-if-present
| oop
code-t o- mat ch- production-1
if (lookahead- predicts-production-1) then
br eak! ;
end;
end;

Optimization. When there are alarge (where large is user-definable) number of strictly LL (1) prediction alternatives, then a
case-statement can be used rather than a sequence of i f -statements. The non-LL (1) cases are handled by generating the
usual i f -statementsin the el se case. For example:

case (LA(1))

http://www.antlr.org/doc/sa-runtime.html (5 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

when KEY_WHI LE, KEY_IF, KEY_DO then
st at ement ;
when KEY_I NT, KEY_FLOAT then
decl arati on;
el se
-- do whatever el se-clause is appropriate
end;

This optimization relies on the compiler building a more direct jump (viajump table or hash table) to the ith production
matching code. Thisis also more readable and faster than a series of set membership tests.

Production Prediction

LL (1) prediction. Any LL(1) prediction test is asimple set membership test. If the set is a singleton set (a set with only one
element), then an integer token type = comparison is done. If the set degree is greater than one, a set is created and the single
input token type is tested for membership against that set. For example, consider the following rule:

a: A| b
b: B| C| D| E| F

The lookahead that predicts production oneis{ A} and the lookahead that predicts productiontwo is{B, C, D, E, F}. The
following code would be generated by ANTLR for rule a (dightly cleaned up for clarity):

ais
if (LA(1) = A) then
mat ch(A) ;
elsif (token_setl. menber(LA(1))) then
b;
end;

end;

The prediction for the first production can be done with a simple integer comparison, but the second alternative uses a set
membership test for speed, which you probably didn't recognize astesting LA(1) menber {B, C, D, E, F}.The
complexity threshold above which set-tests are generated is user-definable. We use arrays of BOOLs to hold sets. The various
sets needed by ANTLR are created and initialized in the generated parser (or lexer) class.

Approximate LL (k) prediction. An extension of LL(1)...basically we do a series of up to k set tests rather than asingle aswe
doinLL(2) prediction. Each decision will use adifferent amount of lookahead, with LL (1) being the dominant decision type.

Production Element Recognition

Token references. Token references are translated to:

mat ch(t oken-type);

For example, areference to token KEY_BEG Nresultsin:

mat ch(KEY_BEG N) ;

where KEY_BEG Nwill be an integer constant defined in the MY_PARSER_TOKENTYPES class generated by ANTLR.
String literal references. String literal references are references to automatically generated tokens to which ANTLR
automatically assigns atoken type (one for each unique string). String references are trandated to:

mat ch(T);

where T is the token type assigned by ANTLR to that token.

Character literal references. Referencing a character literal implies that the current ruleis alexical rule. Single characters, 't',
aretrangdlated to:

http://www.antlr.org/doc/sa-runtime.html (6 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

match('t');
which can be manually inlined with:
if (¢c="t") then
consune;
el se

rai se #ANTLR_NO VI ABLE _ALT_FOR_CHAR_EXCEPTI ON(LA(1), file_nanme, line);
end;

if the method call proves slow (at the cost of space).

Wildcard references. Inlexical rules, the wildcard is trandated to:

consune;
which simply gets the next character of input without doing a test.

References to the wildcard in a parser rule results in the same thing except that the consurme call will be with respect to the
parser.

Not operator. When operating on atoken, ~T is trandlated to:
match_not(T);

When operating on a character literal, ' t ' istrandated to:
match_Not('t');

Range operator. In parser rules, the range operator (T1. . T2) istrandated to:
mat ch_range(T1, T2);

In alexical rule, the range operator for characterscl. . c2 istrandated to:

mat ch_range(cl1, c2);

L abels. Element labels on atom references become TOKENS referencesin parser rulesand | NTsin lexical rules. For example,
the parser rule:

a: id:ID{ QUT::create + "idis " +id + '\n"; }

would be trandlated to:
ais

id: TOKEN : = void;

id:=LT(1);

mat ch(1D);

QUT::create + "idis " +id + '"\n';
end;

For lexical rules such as;

ID: w. { QUT::create + "wis "+ w+ '\n"; }

the following code would result:

IDis
w : CHAR
W= C;
consune; -- match wildcard (anything)
QUT: :create + "wis "+ w+ '"\n";
end;

Labels on rule references result in AST references, when generating trees, of theform| abel _ast .

http://www.antlr.org/doc/sa-runtime.html (7 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

Rulereferences. Rule references become method calls. Arguments to rules become arguments to the invoked methods. Return
values are assigned like Sather assignments. Consider rulereferencei =l i st [1] torule:

list[scope:|INT] returns |INT
{ return scope+3; }

The rule reference would be trand ated to:

i c=1list(1);

Semantic actions. Actions are translated verbatim to the output parser or lexer except for the trandations required for AST
generation.

To add membersto alexer or parser class definition, add the class member definitions enclosed in {} immediately following
the class specification, for example:

cl ass MY_PARSER ext ends Par ser;

{
private i : |NT,;
create (lexer : ANTLR TOKEN _STREAM TOKEN}, aUseful Argument : INT) : SAME is
i := aUseful Argunent;
end;
}
... rules ...

ANTLR collects everything inside the{ ...} and insertsit in the class definition before the rule-method definitions.

Semantic predicates.

Lexer Implementation

Lexer Form
The lexers produced by ANTLR 2.x are alot like the parsers produced by ANTLR 2.x. They only major differences are that
(a) scanners use charactersinstead of tokens, and (b) ANTLR generates aspecial next _t oken rule for each scanner whichis

a production containing each public lexer rule as an alternate. The name of the lexical grammar class provided by the
programmer results in a subclass of ANTLR CHARS CANNER, for example

class MY_LEXER{ TOKEN} < $ANTLR TOKEN STREAM TOKEN} , $ANTLR_FI LE_CURSCR i's

i ncl ude ANTLR CHAR SCANNER{ TOKEN} create -> private char_scanner _create;
i ncl ude CALC_PARSER _TOKENTYPES;

create (istr : $ISTREAM) : SAME is

end;

create (bb : ANTLR BYTE BUFFER) : SAME is

end;

create (state : ANTLR_LEXER SHARED | NPUT_STATE) : SAME is
end;

next token : TOKEN is
scanni ng | ogic

end;
recursive and ot her non-inlined | exical nethods

http://www.antlr.org/doc/sa-runtime.html (8 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

end;

When an ANTLR-generated parser needs another token from its lexer, it calls amethod called next _t oken. The generd
form of the next _t oken method is:

next token : TOKEN i s
Ss_ttype : |INT;
| oop
pr ot ect
reset _text;
case (LA(L))
case for each char predicting lexical rule

call lexical rule gets token type -> sa_ttype
el se

rai se #ANTLR_NO VI ABLE _ALT_FOR_CHAR_EXCEPTI ON(LA(1), file_name, line);
end;

if (sa_ttype /= ANTLR_COVMON_TOKEN: : SKI P) then
return make_token(sa_ttype);
end;

when $ANTLR _RECOGNI TI ON_EXCEPTI ON t hen
report_error(exception.str);

end;
end;
end;

For example, the lexical rules:

cl ass LEX extends Lexer;

W o (Ve | At |t) {sa_ttype := ANTLR _COVMON_TOKEN: : SKIP; } ;
PLUS : '+';

MNUS: '-';

INT @ ('0".."9")+ ;

ID : ('a.."z")+ ;

uo : ("A.."Z)+ ;
would result in something like:

class LEX{ TOKEN} < $ANTLR TOKEN STREAM TOKEN} , $ANTLR _FI LE_CURSCR i's

next _token : TOKEN i s
sa_rettoken : TOKEN,

continue : BOOL := true;
| oop
sa_ttype : INT := ANTLR _COVMON_TOKEN: : | NVALI D_TYPE;
reset _text;
pr ot ect -- for char streamerror handling
pr ot ect -- for lexical error handling
case (LA(1))
when "\t' , "\r" "
t hen
mMAS(true);
sa _rettoken := sa return_token;
when ' +'
t hen
nPLUS(true);
sa_rettoken := sa return_token;

http://www.antlr.org/doc/sa-runtime.html (9 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

when ' -
t hen
nM NUS(true);
sa_rettoken : = sa_return_token;
when '0*, "21', '2', '3, "4, '5, ', "7, '8, '9
t hen
m NT(true);
sa_rettoken := sa return_token;
when 'a', 'b', 'c', 'd, ‘e, ‘'f', "g, "h, i, "y, kT, 'm
‘n', "o, 'p', 'q, 'r', 's'", "t', ‘u, "V, 'wW, "X, 'y,
'z' then
mD true);
sa_rettoken : = sa_return_token;
when 'A", 'B', 'C, 'D, 'E, 'F, "G, 'H, "I', "3, 'K, 'L','M
‘N, 'O, '"P, 'Q, 'R, 'S, 'T", "U, 'V, "W, 'X,"Y
"Z'" then
mJl D(true);
sa_rettoken := sa_return_token;
el se -- default
if (LA(1) = EOF_CHAR) then
upon_eof ;
sa_return_token := make_t oken(ANTLR_COVMON_TOKEN: : EOF_TYPE) ;
el se
rai se #ANTLR_NO VI ABLE _ALT_FOR_CHAR_EXCEPTI ON(LA(1), file_nane,
line);
end; -- if
end; -- case
if (~void(sa_return_token) and continue) then;
sa_ttype := sa_return_token.ttype;
sa_ttype :=test_literals_table(sa_ttype);
sa_return_token.ttype := sa_ttype;
return sa_return_token;
end; -- if
when $ANTLR RECOGNI TI ON_EXCEPTI ON t hen
report _error(exception);
consunme;
end; -- protect
when $ANTLR _CHAR STREAM EXCEPTI ON t hen
rai se #ANTLR_TOKEN_STREAM EXCEPTI ON(excepti on. nessage);
end; -- protect
end; -- loop
end; -- next_token

mMA5(sa _create_token : BOOL) is
sa_ttype @ |NT;
sa_token : TOKEN,
sa _begin : INT := text.length;
sa ttype = W5
sa_save_index : |NT;

case (LA(L))

when "\t

t hen
match('\t');

when '\r'

t hen
match('\r');

when ' '

t hen
match(' ');

http://www.antlr.org/doc/sa-runtime.html (10 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

el se
rai se #ANTLR_NO VI ABLE ALT_FOR CHAR EXCEPTI ON(LA(1), file_nane, line);
end; -- case

sa_ttype := ANTLR_COVMON_TOKEN: : SKI P;
if (sa_create_token and void(sa_token) and sa ttype /=
ANTLR_COMMON _TOKEN: : SKI P) then

sa_token : = make_t oken(sa_ttype);
sa_token.text := text.substring(sa_begin, text.length - sa_begin);
end; -- if
sa_return_token : = sa_token;
end; -- rule

nmPLUS(sa create token : BOOL) is
sa_ttype : |NT;
sa_token : TOKEN
sa _begin : INT := text.length;
sa_ttype : = PLUS;
sa_save_index : |NT;

match(' +');
if (sa_create_token and void(sa_token) and sa ttype /=
ANTLR_COMMON_TCKEN: : SKI P) then

sa_token : = make_t oken(sa_ttype);
sa_token.text := text.substring(sa_begin, text.length - sa_begin);
end; -- if
sa_return_token : = sa_token;
end; -- rule

mM NUS(sa _create token : BOOL) is
sa_ttype : INT; sa_token : TOKEN, sa begin : INT := text.|ength;
sa_ttype := M NUS;
sa_save_index : |NT;

match('-');
if (sa_create token and void(sa_token) and sa ttype /=
ANTLR_COMMON_TOKEN: : SKI P) then

sa_token : = make_token(sa_ttype);
sa_token.text := text.substring(sa begin, text.length - sa begin);
end; -- if
sa _return_token := sa_token;
end; -- rule

m NT(sa_create_token : BOOL) is
sa_ttype : |NT;
sa_token : TOKEN
sa_begin : INT := text.|ength;
sa _ttype : = INT,
sa_save_index : |NT;

sa0_cnt7 : INT := O;
| oop
if (((LA(1) >='"0" and LA(1l) <= '9"))) then
match_range("0, "9);

el se
if (saO_cnt7 >= 1) then
br eak!
el se
rai se #ANTLR _NO VI ABLE ALT FOR CHAR EXCEPTI ON(LA(1), file_nane, line
)
end; -- if

http://www.antlr.org/doc/sa-runtime.html (11 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time
end; -- if

sa0 cnt7 := sa0 cnt7 + 1,
end; -- |oop
if (sa_create_token and void(sa_token) and sa ttype /=
ANTLR_COMMON_TCKEN: : SKI P) then

sa_token : = make_token(sa_ttype);
sa_token.text := text.substring(sa_begin, text.length - sa_begin);
end; -- if
sa_return_token : = sa_token;
end; -- rule

m D(sa create token : BOOL) is
sa ttype : INT; sa token : TOKEN, sa begin : INT := text.length;
sa_ttype : = ID
sa_save_i ndex : |NT;

sal cnt10 : INT := O;
| oop
if (((LA(1) >='a" and LA(1) <= 'z'))) then

match_range('a', 'z');
el se
if (sal_cntl0 >= 1) then
br eak!
el se
rai se #ANTLR NO VI ABLE ALT FOR CHAR EXCEPTI ON(LA(1), file_nane,
)
end; -- if
end; -- if

sal cntl1l0 := sal cnt10 + 1;
end; -- loop
if (sa_create token and void(sa_token) and sa ttype /=
ANTLR_COMMON_TOKEN: : SKI P) then

sa_token : = make_token(sa_ttype);
sa_token.text := text.substring(sa_begin, text.length - sa_begin);
end; -- if
sa_return_token := sa_token;
end; -- rule

mJl D(sa_create_token : BOOL) is
sa ttype : INT;, sa token : TOKEN, sa begin : INT := text.|ength;
sa_ttype := U D
sa_save_index : |NT;

sa2 cntl1l3 : INT := O;
| oop
if (((LA(1l) >="A and LA(1) <="'Z"))) then
match_range('A'", 'Z);

el se
if (sa2_cntl3 >= 1) then
br eak!
el se
rai se #ANTLR _NO VI ABLE ALT_FOR CHAR EXCEPTI ON(LA(1), file_naneg,
)
end; -- if
end; -- if

sa2_cnt1l3 := sa2_cnt1l3 + 1;
end; -- loop
if (sa_create_token and void(sa_token) and sa ttype /=

http://www.antlr.org/doc/sa-runtime.html (12 of 29) [8/10/2001 10:48:53 AM]

i ne

i ne

ANTLR Specification: Run-time
ANTLR_COMMON_TOKEN: : SKI P) then

sa_token : = make_token(sa_ttype);
sa_token.text := text.substring(sa_begin, text.length - sa_begin);
end; -- if
sa_return_token : = sa_token;
end; -- rule
end; -- class

ANTLR-generated lexers assume that you will be reading streams of characters. If thisis not the case, you must create your
own lexer.

Creating Your Own Lexer

To create your own lexer, your Sather class that will doing the lexing must implement interface SANTLR_TOKEN _STREAM
which simply states that you must be able to return a stream of tokens conforming to SANTLR_TOKEN vianext _t oken:

abstract class $ANTLR TOKEN STREAM TOKEN < $ANTLR TOKEN} is
next token : TOKEN,
end;

ANTLR will not generate alexer if you do not specify alexical class.

Launching a parser with anon-ANTLR-generated lexer is the same as launching a parser with an ANTLR-generated lexer:

lex ::= #HAND BU LT_LEXER{ MY_TOKEN} (.. .);
p ::= #MY_PARSER{ MY_TOKEN, ANTLR COMMON_AST} (| ex);
p.start-rule;

The parser does not care what kind of object you use for scanning as aslong asit can answer next _t oken.

If you build your own lexer, and the token values are also generated by that Iexer, then you should inform the
ANTLR-generated parsers about the token type values generated by that lexer. Use the importV ocab in the parsers that use the

externally-generated token set, and create a token definition file following the requirements of the importV ocab option.
Lexical Rules

Lexica rules are essentially the same as parser rules except that lexical rules apply a structure to a series of characters rather
than a series of tokens. Aswith parser rules, each lexical rule results in a method in the output lexer class.

Alternative blocks. Consider asimple series of alternatives within a block:
FORMAT : 'x' | 'f' | 'd';

The lexer would contain the following method:

nFORMAT i s

if (¢ ="'x") then
mat ch(' x');

elsif (¢ ="x") then
mat ch(' x');

elsif (¢ ="'f") then

match('f');
elsif (¢ ="d) then

mat ch(' d');
el se

rai se #ANTLR_NO VI ABLE_ALT_FOR CHAR EXCEPTION(...);
end;

http://www.antlr.org/doc/sa-runtime.html (13 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

return FORMAT;
end;

The only real differences between lexical methods and grammar methods are that |ookahead prediction expressions do
character comparisons rather than LA(i) comparisons, mat ch matches characters instead of tokens, and ar et ur n isadded
to the bottom of the rule.

For example, the common identifier rule would be placed directly into the next _t oken method. That is, rule:
ID ('a'..'z" | A2)+

would not result in amethod in your lexer class. This rule would become part of the resulting lexer as it would be probably
inlined by ANTLR:

next token : TOKEN is
case (LA(L1))
cases for operators and such here
-- chars that predict ID token
case '0', '21', '2', '3 "4, '5") '6", '7", '8, '9 then
loop whilel(¢ >="0" and ¢ < =9);

match_range('0'" , '9');
end;
return nmake_t oken(1D);

el se
check harder stuff here like rules
beginning with a..z
end;

If not inlined, the method for scanning identifiers would look like:

mD: TOKEN is
loop whilel(¢ >="'0" and ¢c < ="'9")

match_range('0' , '9');
end;
return | D

end;

where token names are converted to method names by prefixing them with the letter m The next _t oken method would
become:

next token : TOKEN i s
case (¢)
cases for operators and such here
-- chars that predict ID token
when '0*, *1', 2", '3, "4, ', '6, "7, '8, '9
return make_token(mD);
el se
check harder stuff here like rules beginning with a..z
end;

Note that this type of range loop is so common that it should probably be optimized to:
loop while! (¢ > '0" and ¢ <= '9");

CONSUNE;
end;

Optimization: Recursivelexical rules. Lexical rulesthat are directly or indirectly recursive are not inlined. For example,
consider the following rule that matches nested actions:

ACTI ON
U (ACTION| =))r Y

http://www.antlr.org/doc/sa-runtime.html (14 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

ACTI ONwould be result in (assuming a character vocabulary of 'a..'z, '{', '}):

MACTION : INT is
sa_ttype : INT := ACTI ON,
match(' {");
| oop
case (LA(1))
when ' {' then

mACTI ON;
when 'a', 'b', 'c¢c', 'd", ‘e, *'f', 'g, 'h, i, j', "k, 1ty ',
‘n, ‘o', 'p', 'q, 'r', 's'", "t', "u, "V, 'W, "X, 'y, 'z" then
match_not ('}');
el se
break! ;
end;
end;
match('}"');

return sa_ttype;
end;

Version: $ld: //depot/code/org.antlr/release/antlr-2.7.1/doc/sa-runtine.htm #1 $

http://www.antlr.org/doc/sa-runtime.html (15 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (16 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (17 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (18 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (19 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (20 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (21 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (22 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (23 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (24 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (25 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (26 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (27 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (28 of 29) [8/10/2001 10:48:53 AM]

ANTLR Specification: Run-time

http://www.antlr.org/doc/sa-runtime.html (29 of 29) [8/10/2001 10:48:53 AM]

ANTLR 2.00 Tree Construction

JGuru
ANTLR

jGuru

ANTLR Tree Construction

ANTLR helpsyou build intermediate form trees, or abstract syntax trees (ASTS), by
providing grammar annotations that indicate what tokens are to be treated as subtree roots,
which are to be leaves, and which are to be ignored with respect to tree construction. As
with PCCTS 1.33, you may manipulate trees using tree grammar actions.

It is often the case that programmers either have existing tree definitions or need a special
physical structure, thus, preventing ANTLR from specifically defining the implementation
of AST nodes. ANTLR specifies only an interface describing minimum behavior. Y our tree
implementation must implement this interface so ANTLR knows how to work with your
trees. Further, you must tell the parser the name of your tree nodes or provide atree
"factory" so that ANTLR knows how to create nodes with the correct type (rather than
hardcoding inanew AST() expression everywhere). ANTLR can construct and walk any
tree that satisfiesthe AST interface. A number of common tree definitions are provided.

Notation

In this and other documents, tree structures are represented by a LI SP-like notation, for
example:

#(A B O

isatreewith A at the root, and children B and C. This notation can be nested to describe
trees of arbitrary structure, for example:

#(A B #CDE))

isatreewith A at theroot, B as afirst child, and an entire subtree as the second child. The
subtree, in turn, has C at the root and D, E as children.

Controlling AST construction

AST construction in an ANTLR Parser, or AST transformation in a Tree-Parser, is turned on
and off by the bui | dAST option.

From an AST construction and walking point of view, ANTLR considers all tree nodes to
look the same (i.e., they appear to be homogeneous). Through atree factory or by
specification, however, you can instruct ANTLR to create nodes of different types. Seethe
section below on heterogeneous trees.

Grammar annotations for building ASTs

Leaf nodes

ANTLR assumes that any nonsuffixed token reference or token-range is aleaf node in the
resulting tree for the enclosing rule. If no suffixes at all are specified in agrammar, then a
Parser will construct alinked-list of the tokens (a degenerate AST), and a Tree-Parser will
copy theinput AST.

http://www.antlr.org/doc/trees.html (1 of 19) [8/10/2001 10:49:34 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR 2.00 Tree Construction

Root nodes

Any token suffixed with the "A" operator is considered aroot token. A tree nodeis
constructed for that token and is made the root of whatever portion of the tree has been built

a: A C;
resultsintree#(C #(B A)).

First A is matched and made alonely child, followed by B which is made the parent of the
current tree, A. Finally, C is matched and made the parent of the current tree, making it the
parent of the B node. Note that the same rule without any operators resultsin the flat tree A
B C

Turning off standard tree construction

Suffix atoken reference with "! " to prevent incorporation of the node for that token into the
resulting tree (the AST node for the token is still constructed and may be referenced in
actions, it isjust not added to the result tree automatically). Suffix arule reference™! " to
indicate that the tree constructed by the invoked rule should not be linked into the tree
constructed for the current rule.

Suffix arule definition with "! " to indicate that tree construction for the ruleis to be turned
off. Rules and tokens referenced within that rule still create ASTs, but they are not linked
into aresult tree. The following rule does no automatic tree construction. Actions must be
used to set the return AST value, for example:
begi n!
: | NT PLUS i:INT
{ #begin = #(PLUS INT i); }
For finer granularity, prefix alternatives with "! " to shut off tree construction for that
aternative only. This granularity is useful, for example, if you have alarge number of
aternatives and you only want one to have manual tree construction:
stat:
| D EQUALS" expr /1l auto construction
... sonme alternatives ...
| ! RETURN expr
{#stat = #([| MAG NARY_TOKEN_TYPE] expr);}
nore alternatives ...

Tree node construction

With automatic tree construction off (but with bui | dAST on), you must construct your
own tree nodes and combine them into tree structures within embedded actions. There are
several ways to create atree node in an action:

1. usenew T(ar g) whereT isyour tree nodetype and arg is either asingle token
type, atoken type and token text, or aToken.

2. use ASTFact ory. creat e(ar g) whereTisyour tree node type and arg is either
asingle token type, atoken type and token text, or a Token. Using the factory is

http://www.antlr.org/doc/trees.html (2 of 19) [8/10/2001 10:49:34 AM]

ANTLR 2.00 Tree Construction

more genera than creating a new node directly, asit defers the node-type decision to
the factory, and can be easily changed for the entire grammar.

use the shorthand notation # TY PE] or #[TY PE,"text"]. The shorthand notation
resultsin acall to ASTFactory.create().

use the shorthand notation #id, where id is either atoken matched in therule, alabel,
or arule-reference.

To construct atree structure from a set of nodes, you can set the first-child and next-sibling
references yourself or call the factory make method or use#(. . .) notation described
below.

AST Action Translation

In parsers and tree parsers with bui | dAST set to true, ANTLR will translate portions of
user actionsin order to make it easier to build ASTswithin actions. In particular, the
following constructs starting with '# will be translated:

#l abel

The AST associated with alabeled token-reference or rule-reference may be accessed
as#l abel . Thetrandation isto avariable containing the AST node built from that
token, or the AST returned from the rule.

#rul e

When rule is the name of the enclosing rule, ANTLR will tranglate thisinto the
variable containing the result AST for therule. This allows you to set the return AST
for arule or examine it from within an action. This can be used when AST generation
Ison or suppressed for the rule or alternate. For example:

rt . a:A{ #r = #a; }

Setting the return tree is very useful in combination with normal tree construction
because you can have ANTLR do all the work of building atree and then add an
imaginary root node such as:

decl : (TYPE ID)+

{ #decl = #([DECL,"decl"], #decl); }
ANTLR allows you to assign to #r ul e anywhere within an alternative of therule.
ANTLR ensures that references of and assignments to #r ul e within an action force
the parser'sinternal AST construction variables into a stable state. After you assign to
#r ul e, the state of the parser's automatic AST construction variables will be set as if
ANTLR had generated the tree rooted at #r ul e. For example, any children nodes
added after the action will be added to the children of #r ul e.

#l abel _in

#id

In atree parser, theinput AST associated with alabeled token reference or rule
reference may be accessed as#| abel _i n. Thetrandation isto avariable containing
the input-tree AST node from which the rule or token was extracted. Input variables
are seldom used. Y ou almost always want to use #| abel instead of #| abel _i n.

http://www.antlr.org/doc/trees.html (3 of 19) [8/10/2001 10:49:34 AM]

ANTLR 2.00 Tree Construction

ANTLR supports the translation of unlabeled token references and rule references as
a shorthand notation, as long as the token or rule name is unique within the scope of a
single alternative. In these cases, the use of an unlabeled token reference or rule
reference isidentical to using alabel. For example, this:

rt o A{ #r = #A }

IS equivalent to:

rt o arA{ #r = #a; }
#i d_i nisgiven similar treatment to #| abel _i n.

#[TOKEN_TYPE] or #] TOKEN_TYPE, "t ext "]

AST node constructor shorthand. The trandation isacall to the
ASTFact ory. creat e() method. For example, #[T] istrandated to:
ASFFact ory. create(T)

#(root, cl1, ..., cn)
AST tree construction shorthand. ANTLR looks for the comma character to separate
the tree arguments. Commas within method call tree elements are handled properly;
I.e.,, an element of "f oo(#a, 34) " is ok and will not conflict with the comma
separator between the other tree elementsin the tree. This tree construct is translated

to a"make tree" call. The "make-tree" call is complex due to the need to simulate
variable arguments in languages like Java, but the result will be something like:

ASTFact ory. make(root, c1, ., €n);

In addition to the trandlation of the#(. . .) asawhole, the root and each child
cl. . cn will betrandated. Within the context of a#(. . .) construct, you may use:

o idorlabel asashorthand for #i d or #| abel .
o [...] asashorthandfor#[...].
o (...) asashorthandfor#(...).

The target code generator performs this trandlation with the help of a special lexer that
parses the actions and asks the code-generator to create appropriate substitutions for each
trandated item.

Invoking parsers that build trees

Assuming that you have defined alexer L and a parser P in your grammar, you can invoke
them sequentially on the system input stream as follows.

L | exer = new L(Systemin);

P parser = new P(Ilexer);

par ser. set ASTNodeType(" MyAST") ;

parser.startRul e();

If you have set bui | dAST=t r ue in your parser grammar, then it will build an AST, which
can be accessed viapar ser . get AST() . If you have defined atree parser called T, you

http://www.antlr.org/doc/trees.html (4 of 19) [8/10/2001 10:49:34 AM]

ANTLR 2.00 Tree Construction
can invoke it with:

T wal ker = new T();
wal ker . start Rul e(parser.getAST()); // walk tree

If, in addition, you have set bui | dAST=t r ue in your tree-parser to turn on transform
mode, then you can access the resulting AST of the tree-walker:

AST results = wal ker. get AST() ;
DUnpASTVi sitor visitor = new DuUnpASTVisitor();
visitor.visit(results);

Where DUnpASTVi si t or isapredefined ASTVi si t or implementation that simply
prints the tree to the standard output.

Y ou can also use get aLISP-like print out of atreevia
String s = parser.getAST().toStringList();

AST Factories

ANTLR uses afactory pattern to create and connect AST nodes. Thisis done to primarily to
separate out the tree construction facility from the parser, but also gives you a hook in
between the parser and the tree node construction. Subclass ASTFact or y to alter the

cr eat e methods.

If you are only interested in specifying the AST node type at runtime, use the
set ASTNodeC ass(String cl assNane)

method on the parser or factory. By default, trees are constructed of nodes of type
CommonAST.

The ASTFactory has some generically useful methods:

[** Copy a single node. clone() is not used
because we want to return an AST not a plain
object...type safety issue. Further, we want
to have all AST node creation go through the
factory so creation can be tracked. Returns
null if t is null.

*/

public AST dup(AST t);

[** Duplicate tree including siblings
* of root.

*/

publ i c AST dupLi st (AST t);

[**Duplicate a tree, assumng this is a
* root node of a tree--duplicate that node
* and what's bel ow, ignore siblings of root
* node.

*/
public AST dupTree(AST t);

http://www.antlr.org/doc/trees.html (5 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

Heterogeneous ASTs

Each node in an AST must encode information about the kind of node it is; for example, isit
an ADD operator or aleaf node such asan INT? There are two ways to encode this: with a
token type or with a Java (or C++ etc...) classtype. In other words, do you have asingle
class type with numerous token types or no token types and numerous classes? For lack of
better terms, | (Terence) have been caling ASTs with a single class type homogeneous trees
and ASTswith many class types heterogeneous trees.

The only reason to have a different class type for the various kinds of nodesis for the case
where you want to execute a bunch of hand-coded tree walks or your nodes store radically
different kinds of data. The example | use below demonstrates an expression tree where
each node overridesval ue() sothatr oot . val ue() istheresult of evaluating the input

expression. From the perspective of building trees and walking them with a generated tree
parser, it is best to consider every node as an identical AST node. Hence, the schism that
exists between the hetero- and homogeneous AST camps.

ANTLR supports both kinds of tree nodes--at the same time! 1f you do nothing but turn on
the"bui | dAST=t r ue" option, you get a homogeneous tree. Later, if you want to use

physically separate class types for some of the nodes, just specify that in the grammar that
builds the tree. Then you can have the best of both worlds--the trees are built automatically,
but you can apply different methods to and store different data in the various nodes. Note
that the structure of the tree is unaffected; just the type of the nodes changes.

ANTLR appliesa"scoping" sort of algorithm for determining the class type of a particular
AST node that it needsto create. The default typeis CommonAST unless, prior to parser

invocation, you override that with acal to:
myPar ser . set ASTNodeCl ass("com acne. MyAST") ;

In the grammar, you can override the default class type by setting the type for nodes created
from a particular input token. Use the element option <AST=t ypenane> inthet okens

section:

t okens {
PLUS<AST=PLUSNode>;

}

Y ou may further override the class type by annotating a particular token reference in your
parser grammar:

anl nt : | NT<AST=I NTNode> ;

Thisreference override is super useful for tokens such as | D that you might want converted
to a TYPENAME node in one context and a VARREF in another context.

ANTLR usesthe AST factory to create nodes for which it does not know a specific type. In
other words, ANTLR generates code similar to the following:

AST tnp2 AST = (AST)ast Factory.create(LT(1));

On the other hand, if you specify aclassto use, either in the tokens section or on a particular
reference, ANTLR generates the more appropriate:

http://www.antlr.org/doc/trees.html (6 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction
| NTNode t np3_AST = new | NTNode(LT(1));

Besides being faster and more obvious, this code alleviates another problem with
homogeneous AST's. you have to cast like mad from your type to AST and back (though
ANTLR does et you set the AST label with grammar option ASTLabel Type).

An Expression Tree Example

This example includes a parser that constructs expression ASTS, the usual lexer, and some
AST node class definitions.

Let's start by describing the AST structure and node types. Expressions have plus and
multiply operators and integers. The operators will be subtree roots (nonleaf nodes) and
integers will be leaf nodes. For example, input 3+4*5+21 yields a tree with structure:

(+(+3(*45)) 21)

or:
+
|
+--21
I
3--%

|
4--5

All AST nodes are subclasses of Cal cAST, which are Base AST's that also answer method
val ue(). Methodval ue() evaluatesthetree starting at that node. Naturaly, for

integer nodes, val ue() will simply return the value stored within that node. Hereis
Cal cAST:

publ i c abstract class Cal cAST
extends antlr. BaseAST
{

}

The AST operator nodes must combine the results of computing the value of their two
subtrees. They must perform a depth-first walk of the tree below them. For fun and to
make the operations more obvious, the operator nodes define left() and right() instead,
making them appear even more different than the normal child-sibling tree representation.
Consequently, these expression trees can be treated as both homogeneous child-sibling trees
and heterogeneous expression trees.

publ i c abstract class Bi naryQperat or AST ext ends
Cal cAST
{

public abstract int value();

/** Make me | ook |Iike a heterogeneous tree */
public Cal cAST left() {

return (Cal cAST)get FirstChil d();
}

public Cal cAST right() {

http://www.antlr.org/doc/trees.html (7 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

}

CalcAST t = left();
if (t==null) return null;
return (Cal cAST)t. get NextSi bling();

The ssimplest node in the tree looks like:

I nport antlr. BaseAST,

I nport antlr. Token;

I mport antlr.collections. AST;
| nport java.io.*;

/[** A sinple node to represent an | NT */
public class | NTNode extends Cal cAST {

}

The operators derive from Bi nar yQper at or AST and defineval ue() interms of

i nt v=0;

publ i ¢ I NTNode(Token tok) {
v = Integer. parselnt(tok.getText());
}

[** Conpute value of subtree; this is
* heterogeneous part :)
*/
public int value() {
return v;
}

public String toString() {
ret urn n n +V;
}

/'l satisfy abstract nethods from BaseAST

public void initialize(int t, String txt) {

}
public void initialize(AST t) {

}

public void initialize(Token tok) {

}

l eft () andri ght (). For example, hereis PLUSNode:

I nport antlr. BaseAST,;

i mport antlr. Token;

i mport antlr.collections. AST;
Il nport java.io.*;

[** A sinple node to represent PLUS operation */
public class PLUSNode extends Bi naryQper at or AST {

publ i ¢ PLUSNode(Token tok) {

http://www.antlr.org/doc/trees.html (8 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

}

/[** Conpute val ue of subtree;
* this is heterogeneous part :)
*/
public int value() {
return left().value() + right().value();
}

public String toString() {
return " +";
}

/1l satisfy abstract nethods from BaseAST
public void initialize(int t, String txt) {

}

public void initialize(AST t) {

}

public void initialize(Token tok) {
}

}

The parser is pretty straightforward except that you have to add the optionsto tell ANTLR
what node types you want to create for which token matched on the input stream. The

t okens section lists the operators with element option AST appended to their definitions.
ThistellsANTLR to build PLUSNode objects for any PLUS tokens seen on the input
stream, for example. For demonstration purposes, | NT is not included in thet okens
section--the specific token references is suffixed with the element option to specify that
nodes created from that | NT should be of type | NTNode (of course, the effect is the same
asthereisonly that one referenceto | NT).

cl ass Cal cParser extends Parser:
options {

bui | dAST = true; // uses CommpDnAST by default
}

/1 define a bunch of specific AST nodes to build.
/[l can override at actual reference of tokens in
[l grammar bel ow.
t okens {

PLUS<AST=PLUSNode>;

STAR<AST=MULTNode>:

}

expr: mexpr (PLUSM nmexpr)* SEM!

mexpr
atom (STAR* atom *

http://www.antlr.org/doc/trees.html (9 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

/'l Denonstrate token reference option

at om | NT<AST=| NTNode>

Invoking the parser isdone as usual. Computing the value of the resulting AST is
accomplished by ssmply calling method val ue() on the root.

i mport java.io.*;
i nport antlr. CormonAST,;
I mport antlr.collections. AST;

class Main {

public static void main(String[] args) {

try {
Cal cLexer | exer =

new Cal cLexer (

new Dat al nput St rean{ System i n)

),

Cal cParser parser =

new Cal cPar ser (| exer);
/'l Parse the input expression

parser.expr();

Cal cAST t = (Cal cAST) par ser. get AST() ;

Systemout.println(t.toStringTree());

/'l Conpute value and return

int r =t.value();

Systemout.printin("value is "+r);

} catch(Exception e) {

Systemerr.println("exception: "+e);

e.printStackTrace();

}

For completeness, here isthe lexer:
cl ass Cal cLexer extends Lexer;

W ("
| "\t
| “\n'
o)
{ $set Type(Token. SKI P);
LPAREN. ' (' ;
RPAREN: ')' ;

http://www.antlr.org/doc/trees.html (10 of 19) [8/10/2001 10:49:35 AM]

}

ANTLR 2.00 Tree Construction

STAR: tE
PLUS: B
SEM : B
prot ect ed
DAT

: ‘0.9
| NT : (DAT)+ ;

Describing Heterogeneous Trees With Grammars

So what's the difference between this approach and default homogeneous tree construction?
The big difference is that you need atree grammar to describe the expression tree and
compute resulting values. But, that's agood thing asit's "executable documentation” and
negates the need to handcode the tree parser (theval ue() methods). If you used
homogeneous trees, hereis all you would need beyond the parser/lexer to evaluate the
expressions. [This code comesfromthe exanpl es/ j aval cal c directory.]

cl ass Cal cTreeWal ker extends TreeParser;

expr returns [float r]

{
float a,b;
r =0;
}
: #(PLUS a=expr b=expr) {r = a+b;}
| #(STAR a=expr b=expr) {r = a*b;}
| i o I NT
{r = (float)

I nteger. parselnt(i.getText());}
Because Terence wants you to use tree grammars even when constructing heterogeneous

ASTSs (to avoid handcoding methods that implement a depth-first-search), implement the
following methods in your various heterogeneous AST node class definitions:

[** Get the token text for this node */
public String getText();

[** Get the token type for this node */
public int getType();

That is how you can use heterogeneous trees with atree grammar. Note that your token
types must match the PLUS and STAR token types imported from your parser. 1.e.,, make
sure PLUSNode. get Type() returns Cal cPar ser TokenTypes. PLUS. Thetoken
types are generated by ANTLR in interface files that 1ook like:
public interface Cal cParser TokenTypes {
i nt PLUS
int STAR

4;
5

http://www.antlr.org/doc/trees.html (11 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

}
AST (XML) Serialization

[Oliver Zeigermann olli @zeigermann.de provided the initial implementation of this serialization. His
XTAL XML trandation code is worth checking out; particularly for reading XML-serialized ASTs back
in.

For avariety of reasons, you may want to store an AST or passit to another program or
computer. Class antlr.BaseAST is Serializable using the Java code generator, which means
you can write ASTs to the disk using the standard Java stuff. Y ou can aso writethe ASTs
out in XML form using the following methods from BaseAST:

e public void xm Serialize(Witer out)

e public void xm SerializeNode(Witer out)

e public void xm SerializeRoot Qpen(Witer out)
e public void xm SerializeRootC ose(Witer out)

All methods throw | OExcept i on.

You can overridexm Seri al i zeNode and so on to change the way nodes are written

out. By default the serialization uses the class type name as the tag name and has attributes
t ext andt ype to store the text and token type of the node.

The output from running the simple heterogeneous tree example, examplesjava/heteroAST,
yields:
(+(+ 3(* 4 5)) 21)
<PLUS><PLUS><| nt >3</ i nt ><MJLT>
<i nt >4</i nt ><i nt >5</i nt >
</ MULT></ PLUS><i nt >21</ i nt ></ PLUS>
value is 44

The LI1SP-form of the tree shows the structure and contents. The various heterogeneous
nodes override the open and close tags and change the way |leaf nodes are serialized to use
<i nt >val ue</ i nt > instead of tag attributes of a single node.

Here is the code that generates the XML.:

Witer w = new Qutput StreamWiter(System out);
t.xm Serialize(w);

wwite("\n");

w. flush();

AST enumerations

The ASTfi ndAl | andfi ndAl | Parti al methods return enumerations of tree nodes
that you can walk. Interface

antlr.coll ections. ASTEnuner ati on

and

http://www.antlr.org/doc/trees.html (12 of 19) [8/10/2001 10:49:35 AM]

mailto:olli@zeigermann.de
http://www.zeigermann.de/xtal.html

ANTLR 2.00 Tree Construction
class antlr. Col |l ections.inpl.ASTEnuner at or

implement this functionality. Hereis an example:

/1 Print out all instances of
/| a-subtree-of-interest
[l found within tree "t'.
ASTEnunmer ati on enum
enum = t.findAl | (a-subtree-of-interest);
while (enum hasMreNodes()) {
System out . printl n(
enum next Node().toStringList()
);
}

A few examples

sum:term (PLUSM term*

The """ suffix on the PLUS tells ANTLR to create an additional node and placeit asthe
root of whatever subtree has been constructed up until that point for rule sum The subtrees
returned by the t er mreferences are collected as children of the addition nodes. If the
subrule is not matched, the associated nodes would not be added to the tree. The rule returns
either the tree matched for thefirst t er mreference or a PLUS-rooted tree.

The grammar annotations should be viewed as operators, not static specifications. In the
above example, each iteration of the (...)* will create anew PLUS root, with the previous
tree on the left, and the tree from the new t er mon the right, thus preserving the usual
associatively for "+".

Look at the following rule that turns off default tree construction.

decl !:
nodi fiers type 1D SEM;
{ #decl = #([DECL], ID, ([TYPE] type),
([MOD] nodifiers)); }

In this example, a declaration is matched. The resulting AST has an "imaginary" DECL node
at the root, with three children. The first child isthe | D of the declaration. The second child
Is a subtree with an imaginary TYPE node at the root and the AST from thet ype rule asits
child. Thethird child is a subtree with an imaginary MOD at the root and the results of the
nmodi fi er s ruleasits child.

Labeled subrules

[THISWILL NOT BE IMPLEMENTED ASLABELED
SUBRULES..We'll do something else eventually.]

In 2.00 ANTLR, each rule has exactly one tree associated with it. Subrules simply add

http://www.antlr.org/doc/trees.html (13 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

elements to the tree for the enclosing rule, which is normally what you want. For example,
expression trees are easily built via:

expr: 1D (PLUS* ID)*

However, many times you want the elements of a subrule to produce atreethat is
independent of the rule's tree. Recall that exponents must be computed before coefficients
aremultiplied in for exponent terms. The following grammar matches the correct syntax.

/[l match exponent terns such as "3*x"4"
eterm
expr MJULT | D EXPONENT expr

However, to produce the correct AST, you would normally splitthel D EXPONENT expr
portion into another rule like this:

eterm

expr MJULTA exp

exp:
| D EXPONENT? expr

In this manner, each operator would be the root of the appropriate subrule. For input
3*x"4, thetree would look like:

#(MULT 3 #(EXPONENT I D 4))

However, if you attempted to keep this grammar in the samerule:

eterm
expr MULTA (I D EXPONENT”A expr)

both "~" root operators would modify the same tree yielding

#(EXPONENT #(MULT 3 I1D) 4)

This tree has the operators as roots, but they are associated with the wrong operands.

Using alabeled subrule allows the original rule to generate the correct tree.

http://www.antlr.org/doc/trees.html (14 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

eterm
expr MULTM e: (I D EXPONENT” expr)

In this case, for the same input 3* x4, the labeled subrule would build up its own subtree
and make it the operand of the MULT tree of the et er mrule. The presence of the label alters
the AST code generation for the elements within the subrule, making it operate more like a
normal rule. Annotations of "~" make the node created for that token reference the root of
the tree for the e subrule.

Labeled subrules have aresult AST that can be accessed just like the result AST for arule.
For example, we could rewrite the above decl example using labeled subrules (note the use
of ! at the start of the subrules to suppress automatic construction for the subrule):

decl !:
m(! nodifiers { #m = #([MOD] nodifiers); })
t:(! type { #t = #([TYPE] type); })
| D
SEM ;
{ #decl = #([DECL] IDt m); }

What about subrules that are closure loops? The same rules apply to a closure subrule--there
isasingletree for that loop that is built up according to the AST operators annotating the
elements of that loop. For example, consider the following rule.

term T 1: (0PN expr)+

ForinputT OP A OP B OP C, thefollowing tree structure would be created:

#(T #(OP #(OP #(OP A) B) O)

which can be drawn graphically as

-
|

oP

|
oP--C
|
oP--B
|

A

Thefirst important thing to note is that each iteration of the loop in the subrule operates on

http://www.antlr.org/doc/trees.html (15 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

the same tree. The resulting tree, after all iterations of the loop, is associated with the
subrule label. The result tree for the above labeled subruleis:

#(OP #(OP #(OP A) B) C

The second thing to note is that, because T is matched first and there is aroot operator after
it intherule, T would be at the bottom of the tree if it were not for the label on the subrule.

Loops will generally be used to build up lists of subtree. For example, if you want alist of
polynomial assignments to produce a sibling list of ASSI GN subtrees, then the following
rule you would normally split into two rules.

interp
(1D ASSICGN poly ";")+

Normally, the following would be required

interp
(assign)+
assién
| D ASSI G\ poly ";"!

Labeling a subrule allows you to write the above example more easily as:

interp
(r:(IDASSIG\N™ poly ";"))+

Each recognition of a subrule resultsin atree and if the subrule is nested in aloop, al trees
arereturned as alist of trees (i.e., the roots of the subtrees are siblings). If the labeled
subrule is suffixed witha"! ", then the treg(s) created by the subrule are not linked into the
tree for the enclosing rule or subrule.

L abeled subrules within labeled subrules result in trees that are linked into the surrounding
subrule's tree. For example, the following rule resultsin atree of theform X #(A #(B
C D VY.

a : Xr:(AAs:(B~Q D Y

L abeled subrules within nonlabeled subrules result in trees that are linked into the
surrounding rule's tree. For example, the following rule resultsin atree of theform #(A X
#(BC DY).

http://www.antlr.org/doc/trees.html (16 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

a : X(A s:(B~O DY

Reference nodes

Not implemented. A node that does nothing but refer to another node in the tree. Nice for
embedding the same tree in multiple lists.

Required AST functionality and form

The data structure representing your trees can have any form or type name as long as they
implement the AST interface:

package antlr.coll ections;

/** M niml AST node interface used by ANTLR
* AST generation and tree-wal ker.
*/
public interface AST {
[** Get the token type for this node */
public int getType();

[** Set the token type for this node */
public void setType(int ttype);

[** Get the token text for this node */
public String getText();

[** Set the token text for this node */
public void setText(String text);

[** Get the first child of this node;
* null if no children */
public AST getFirstChild();

[** Set the first child of a node */
public void setFirstChild(AST c);

[** Get the next sibling in line after this
* one

*/

public AST get Next Si bling();

/** Set the next sibling after this one */
public void setNextSibling(AST n);

/[** Add a (rightnost) child to this node */
public void addChi | d(AST node);

http://www.antlr.org/doc/trees.html (17 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

/** Are two nodes exactly equal ? */
publ i ¢ bool ean equal s(AST t);

/** Are two |lists of nodes/subtrees exactly
* equal in structure and content? */
publ i ¢ bool ean equal sLi st (AST t);

/** Are two |lists of nodes/subtrees
* partially equal? In other words, 'this’
* can be bigger than 't'
*/
publ i ¢ bool ean equal sLi stPartial (AST t);
/[** Are two nodes/subtrees exactly equal ? */
publ i ¢ bool ean equal sTree(AST t);

/[** Are two nodes/subtrees exactly partially
* equal? In other words, 'this' can be
* bigger than 't'
*/
publ i c bool ean equal sTreePartial (AST t);
/[** Return an enuneration of all exact tree
* matches for tree within "this'
*/
publ i ¢ ASTEnuneration findAl Il (AST tree);
/** Return an enuneration of all partial
* tree matches for tree within "this'.
*/
publi ¢ ASTEnuneration findAllPartial (
AST subtree);

/[** Init a node with token type and text */
public void initialize(int t, String txt);
/[** Init a node using content from't' */
public void initialize(AST t);

/[** Init a node using content from't' */
public void initialize(Token t);

/[** Convert node to printable form*/
public String toString();
[** Treat 'this' as list (i.e.,
* consider 'this'
* siblings) and convert to printable
* form
*/
public String toStringList();
[** Treat 'this' as tree root
* (i.e., don't consider
* '"this' siblings) and convert
* to printable form*/
public String toStringTree();

http://www.antlr.org/doc/trees.html (18 of 19) [8/10/2001 10:49:35 AM]

ANTLR 2.00 Tree Construction

This scheme does not preclude the use of heterogeneous trees versus homogeneous trees.
However, you will need to write extra code to create heterogeneous trees (via a subclass of
ASTFact or y) or by specifying the node types at the token reference sites or in the

t okens section, whereas the homogeneous trees are free.

Version: $Id: //depot/code/org.antlr/release/antlr-2.7.1/doc/trees.htmi#1 $

http://www.antlr.org/doc/trees.html (19 of 19) [8/10/2001 10:49:35 AM]

ANTLR Specification: Grammar Inheritance

JGuru

ANTLR

jGuru

Grammar Inheritance

Object-oriented programming languages such as C++ and Java allow you to define a
new object asit differs from an existing object, which provides a number of benefits.
"Programming by difference” saves devel opment/testing time and future changes to the
base or superclass are automatically propogated to the derived or subclass.

Introduction and motivation

Allowing the ANTLR programmer to define a new grammar asit differs from an
existing grammar provides significant benefits. Devel opment time goes down because
the programmer only has to specify the rules that are different or that need to be added.
Further, when the base grammar changes, all derived grammars will automatically
reflect the change. Grammar inheritance is aso an interesting way to change the
behavior of an existing grammar. A rule or set of rules can be respecified with the same
structure, but with different actions.

The most obvious use of grammar inheritance involves describing multiple dial ects of
the same language. Previous solutions would require multiple grammar versions or a
single grammar that recognized all dialects at once (using semantics to constrain the
input to asingle dialect). With grammar inheritance, one could write a base grammar for
the common components and then have a derived grammar for each dialect. Code
sharing would occur at the grammar and output parser class level.

Consider asimple subset of English:
cl ass PrimarySchool Engli sh;

sent ence
subj ect predicate

subj ect
: NOUN

predicate
VERB

This grammar recognizes sentenceslike: Di | bert speaks.

To extend this grammar to include sentences manageable by most American college
students, we might add direct objects to the definition of a sentence. Rather than copying
and modifying the Pr i mar ySchool Engl i sh grammar, we can simply extend it:

cl ass Ameri canCol | egeEngli sh extends
Pri marySchool Engl i sh;

sent ence
subj ect predicate object

http://www.antlr.org/doc/inheritance.html (1 of 4) [8/10/2001 10:49:54 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR Specification: Grammar Inheritance

obj ect

PREPCSI TI ON ARTI CLE NOUN
This grammar describes sentencessuchasDi | bert speaks to a dog. Whilethis
looks trivial to implement (just add the appropriate ext ends clause in Javato the
output parser class), it involves grammar analysis to preserve grammatical correctness.
For example, to generate correct code, ANTLR needs to pull in the base grammar and
modify it according to the overridden rules. To see this, consider the following grammar
for asimple language:

cl ass Si npl e;

stat: expr ASSI GN expr
| SEM COLON

1

expr : | D

Clearly, the | Dtoken isthe lookahead set that predicts the recognition of the first
aternative of st at . Now, examine aderived dialect of Si npl e:

cl ass Derived extends Sinple;

expr: | D
| | NT
Inthiscase, { | D, | NT } predictsthefirst alternative of st at . Unfortunately, a derived

grammar affects the recognition of rules inherited from the base grammar! ANTLR must
not only overrideexpr inDer i ved, but it must override st at .

Determinining which rules in the base grammar are affected is not easy, so our
implementation simply makes a copy of the base grammar and generates a whole new
parser with the appropriate modifications. From the programmer's perspective,
code/grammar sharing would have occurred, however, from an implementation
perspective a copy of the base grammar would be made.

Functionality

Grammar Der i ved inherits from Grammar Base all of the rules, options, and actions of
Base including formal/actual rule parameters and rule actions. Der i ved may override

any option or rule and specify new options, rules, and member action. The subgrammar
does not inherit actions outside of classes or file options. Consider rule Base defined as:

cl ass Base extends Parser;
options {

k = 2;
}

http://www.antlr.org/doc/inheritance.html (2 of 4) [8/10/2001 10:49:54 AM]

ANTLR Specification: Grammar Inheritance

{
int count = O;

}

a : A B {an-action}
| AC

c . C

A new grammar may be derived as follows:
cl ass Derived extends Base;

options {
k = 3; /'l need nore | ookahead; override
bui | dAST=true;// add an option

}

{

int size = 0; // override; no 'count' def here

a : A B {an-action}
| A C {an-extra-action}

| Z // add an alt to rule a
b ; a
| ABD /'l requires LL(3)

ANTLR will actually interpret the subgrammar asif you had typed:
cl ass Derived extends Parser;

options {
k=3;
bui | dAST=t r ue;
}
{
Iint size = 0; // override Base action
}
a . A B {an-action}
| A C {an-extra-action}
| Z /1l add an alt to rule a
b : a
| ABD /'l requires LL(3)

/1l inherited from grammar Base
c: C

Rules may be overridden to change their signatures such as their parameters or return

http://www.antlr.org/doc/inheritance.html (3 of 4) [8/10/2001 10:49:54 AM]

ANTLR Specification: Grammar Inheritance

types:

cl ass Base extends Parser;

a[int x] returns [int V]
A

cl ass Derived extends Base;
a[fl oat z]
A

ANTLR will generate a warning, however:
warning: rule Derived.a has different signature than Base.a

Because of this ability, the subgrammars do not actually inherit, in the Java-sense, from
the supergrammar. Different signatures on the generated methods would prevent the
parser from compiling.

Where Are Those Supergrammars?

The set of potentia "supergrammars” available to some grammar P includes any other
grammar in the same file as P and any listed on the ANTLR command line with

-glib fl.g;f2.9g
where the files must include path names if they are located in another directory.

How is supergrammar P found? The grammars defined in the supergrammar list are read
in and an inheritance hierarchy is constructed; any repeated grammar definition in thisis
ignored. The grammars in the normally specified grammar file are also included in the
hierarchy. Incomplete hierarchies resultsin an error message from ANTLR. Grammars
in the same file as P are given precendence to those obtained from other files.

The type of grammar (Lexer,Parser, TreeParser) is determined by the type of the highest
grammar in the inheritance chain.

Error Messages

ANTLR generates afile called expandedT. g, given agrammar input file (not the
-glibfiles) caled T. g. All error messages are relative to this as you really want to see
the whole grammar when dealing with ambiguities etc... In the future, we may have a
better solution.

Version: $ld: //depot/code/org.antlr/release/antlr-2.7.1/doc/inheritance.html#1 $

http://www.antlr.org/doc/inheritance.html (4 of 4) [8/10/2001 10:49:54 AM]

ANTLR Options
Options
1 / File, Grammar, and Rule Options

- Rather than have the programmer specify a bunch of command-line arguments to the parser

JGUFU generator, an options section within the grammear itself serves this purpose. This solution is
preferrable because it associates the required options with the grammar rather than ANTLR

ANTLR invocation. The section is preceded by the opt i ons keyword and contains a series of
iGuru option/value assignments surrounded by curly braces such as:
options {
k = 2;

t okenVocbhaul ary = | DL;
def aul t Error Handl er = fal se;

}
The options section for an entire (.g) file, if specified, immediately follows the (optional) file
header:

header { package X; }
options {l anguage="FQO';}

The options section for agrammar, if specified, must immediately follow the';' of the class
specifier:

cl ass MyParser extends Parser;

options { k=2; }

The options section for arule, if specified, must immediately follow the rule name:

myrul e[args] returns [retval]
options { defaultErrorHandl er=fal se; }
/1l body of rule...

The option names are not keywords in ANTLR, but rather are entriesin a symbol table
examined by ANTLR. The scope of option namesislimited to the opt i ons section;
identifiers within your grammar may overlap with these symbols.

The only ANTLR options not specified in the opt i ons section are things that do not vary
with the grammar, but rather than invocation of ANTLR itself. The best exampleis
debugging information. Typically, the programmer will want a makefile to change an
ANTLR flag indicating a debug or release build.

Options supported in ANTLR

Key for the type column: F=file, G=grammar, R=rule, L=lexer, S=subrule, C=C++ only.

Symbol Type Description
| anguage F Set the generated language
K G Set the lookahead depth

http://www.antlr.org/doc/options.html (1 of 11) [8/10/2001 10:50:10 AM]

http://www.jguru.com/
http://www.antlr.org/
http://www.jguru.com/

ANTLR Options

inportVocab G Initial grammar vocabulary

export Vocab G | Vocabulary exported from grammar

testLiterals LG,LR | Generate literal-testing code

def aul t Err or Handl er G,R | Control default exception-handling

codeGenMakeSwi t chThr eshol d G Control code generation

codeGenBi t set Test Thr eshol d G Control code generation

bui | dAST G Set automatic AS_T construction in Parser
(transform mode in Tree-Parser)

anal yzer Debug G Spit out_lots of debugging ir_lformation while
performing grammar analysis.

codeGenDebug G Spﬁt out lots of deb_uggi ng information while
doing code generation.

ASTLabel Type G Speci.fy the type of all user-defined |abels,
overrides default of AST.

char Vocabul ary LG | Set the lexer character vocabulary
Both the lexer and the parser have an

interactive G interactive option, which defaultsto "false".
See the parser speed section above.
Case isignored when comparing against

caseSensitive LG character and string literalsin the lexer. The

http://www.antlr.org/doc/options.html (2 of 11) [8/10/2001 10:50:10 AM]

case of the input stream is maintained when
stored in the token objects.

ANTLR Options

I gnore

LR

Specify alexer rule to use as whitespace
between lexical rule atomic elements (chars,
strings, and rule references). The grammar
analysis and, hence, the lookhaead sets are
aware of the whitespace references. Thisisa
lexer rule option.

par aphr ase

LR

An easy way to specify astring to usein place
of the token name during error processing.

caseSensitivelLiteral s

LG

Case isignored when comparing tokens
against the listerals table.

cl assHeader Suf fi x

Append a string to the enclosing class
definition. In Java, thisamountsto a
comma-separated list of interfaces that your
lexer, parser, or tree walker must implement.

mangl eLi teral Prefi x

Sets the prefix for the token type definitions
of literals rather than using the default of
"TOKEN_".

war nwWwhenFol | owAnbi g

http://www.antlr.org/doc/options.html (3 of 11) [8/10/2001 10:50:10 AM]

Warnings will be printed when the lookahead
set of what follows a subrule containing an
empty alternative conflicts with a subrule
aternative or when the implicit exit branch of
aclosure loop conflicts with an aternative.
The default istrue.

ANTLR Options

gener at eAnbi g\War ni ngs

When true, no ambiguity/nondeterminism
warning is generated for the decision
associated with the subrule. Usethisvery
carefully--you may change the subrule and
miss an ambiguity because of the option.
Make very sure that the ambiguity you mask
is handled properly by ANTLR.
ANTLR-generated parsers resolve ambiguous
decisions by consuming input as soon as
possible (or by choosing the alternative listed
first).

See the Javaand HTML grammars for proper
use of thisoption. A comment should be
supplied for each use indicating why it is ok
to shut off the warning.

filter

LG

When true, the lexer ignores any input not
exactly matching one of the nonprotected
|lexer rules. When set to arule name, thefilter
option using the rule to parse input characters
between valid tokens or those tokens of
interest.

nanespace

FGC

When s¢t, all the C++ code generated is
wrapped in the namespace mentioned here.

nanespaceSt d

FGC

When s¢t, the

ANTLR_USE _NAMESPACE(std) macrosin
the generated C++ code are replaced by this
value. Thisis acosmetic option that only
makes the code more readable. It does not
replace this macro in the support C++ files.
Note: use this option directly after setting the
language to C++.

nanespaceAnt | r

http://www.antlr.org/doc/options.html (4 of 11) [8/10/2001 10:50:10 AM]

FGC

When s¢t, the

ANTLR_USE _NAMESPACE(antlr) macros
in the generated C++ code are replaced by this
value. Thisis acosmetic option that only
makes the code more readable. It does not
replace this macro in the support C++ files.
Note: use this option directly after setting the
language to C++.

ANTLR Options

Boolean toggle, when set to ‘true’ #line
<linenumber> "filename" lines are inserted in
the generated code so compiler
errors/warnings refer the .g files.

genHashLi nes FGC

language: Setting the generated language

ANTLR supports multiple, installable code generators. Any code-generator conforming to
the ANTLR specification may be invoked via the language option. The default language is
"Java’, but "Cpp", and "Sather" are also supported. The language option is specified at the
file-level, for example:

header { package zparse; }
options { |anguage="Java"; }
cl asses follow ...

k: Setting the lookahead depth

Y ou may set the lookahead depth for any grammar (parser, lexer, or tree-walker), by using
the k= option:

cl ass MyLexer extends Lexer;
options { k=3; }

Setting the lookahead depth changes the maximum number of tokens that will be examined
to select alternative productions, and test for exit conditions of the EBNF constructs (...)?,
(...)+, and (...)*. The lookahead analysisis linear approximate (as opposed to full LL(k)).
Thisisabit involved to explain in detail, but consider this example with k=2:
r. (AB| BA)

| AA
Full LL(k) analysis would resolve the ambiguity and produce alookahead test for the first
aternate like:

if ((LA(1)==A & LA(2)==B) || (LA(1)==B &% LA(2)==A))

However, linear approximate analysis would logically OR the lookahead sets at each depth,
resulting in atest like:

if ((LA(1)==A || LA(1)==B) && (LA(2)==A || LA(2)==B))

Which is ambiguous with the second alternate for { A,A}. Because of this, setting the
lookahead depth very high tends to yield diminishing returns in most cases, because the
lookahead sets at large depths will include almost everything.

importVocab: Initial Grammar Vocabulary

[See the documentation on vocabularies for more information]

To specify aninitial vocabulary (tokens, literals, and token types), use the importV ocab
grammar option.

http://www.antlr.org/doc/options.html (5 of 11) [8/10/2001 10:50:10 AM]

ANTLR Options

cl ass MyParser extends Parser;
options {

| nport Vocab=V;
}

ANTLR will look for VTokenTypes.txt in the current directory and preload the token
manager for MyParser with the enclosed information.

This option is useful, for example, if you create an external lexer and want to connect it to
an ANTLR parser. Conversely, you may create an external parser and wish to use the token
set with an ANTLR lexer. Finally, you may find it more convenient to place your grammars
in separate files, especialy if you have multiple tree-walkers that do not add any literals to
the token set.

The vocabulary file has an identifier on the first line that names the token vocabulary that is
followed by lines of the form ID=value or "literal"=value. For example:

ANTLR // vocabul ary nane
"header" =3

ACTI ON=4

COLON=5

SEM =6

A file of thisform is automatically generated by ANTLR for each grammar.

Note: you must take care to run ANTLR on the vocabulay-generating grammar files before
you run ANTLR on the vocabulary-consuming grammar files.

exportVocab: Naming Export Vocabulary

[See the documentation on vocabularies for more information]

The vocabulary of agrammar is the union of the set of tokens provided by an importV ocab
option and the set of tokens and literals defined in the grammar. ANTLR exports a
vocabulary for each grammar whose default name is the same as the grammar. So, the
following grammar yields a vocabulary called P:

cl ass P extends Parser;
a . A

ANTLR generates files PTokenTypes.txt and PTokenTypes.,java.

Y ou can specify the name of the exported vocabulary with the exportVocab option. The
following grammar generates a vocabulary called V not P.

cl ass P extends Parser;
options {
export Vocab=V,

}
a ;. A

All grammars in the same file witht the same vocabul ary name contribute to the same
vocabulary (and resulting files). If the the grammars were in separate files, on the other
hand, they would al overwrite the samefile. For example, the following parser and lexer

http://www.antlr.org/doc/options.html (6 of 11) [8/10/2001 10:50:10 AM]

ANTLR Options

grammars both may contribute literals and tokens to the MyTokens vocabulary.

cl ass MyParser extends Parser;
options {

export Vocab=MyTokens;
}

cl ass MyLexer extends Lexer;
options {

export Vocab=MyTokens;
}

testLiterals: Generate literal-testing code

By default, ANTLR will generate code in all lexers to test each token against the literals
table (the table generated for literal strings), and change the token type if it matches the

table. However, you may suppress this code generation in the lexer by using a grammar

option:

class L extends Lexer;

options { testLiteral s=fal se; }

If you turn this option off for alexer, you may re-enableit for specific rules. Thisis useful,
for example, if al literals are keywords, which are special cases of ID:

I D
options { testLiteral s=true; }
LETTER (LETTER | DIGAT)*

If you want to test only a portion of atoken'stext for amatch in the literals table, explicitly
test the substring within an action using method:

public int testLiteral sTable(String text, int ttype) {...}

For example, you might want to test the literals table for just the tag word in an HTML
word.

defaultErrorHandler: Controlling default exception-handling

By default, ANTLR will generate default exception handling code for a parser or tree-parser
rule. The generated code will catch any parser exceptions, synchronize to the follow set of
therule, and return. Thisis simple and often useful error-handling scheme, but it is not very
sophisticated. Eventually, you will want to install your own exepttion handlers. ANTLR will
automatically turn off generation of default exception handling for rule where an exception
handler is specified. Y ou may aso explicitly control generation of default exception
handling on a per-grammar or per-rule basis. For example, thiswill turn off default
error-handing for the entire grammar, but turn it back on for rule "r":

cl ass P extends Parser;
options {defaultErrorHandl er=fal se;}

http://www.antlr.org/doc/options.html (7 of 11) [8/10/2001 10:50:10 AM]

ANTLR Options

r
options {defaul t ErrorHandl er=true;}
A B C

For more information on exception handling in the lexer, go here.

codeGenMakeSwitchThreshold: controlling code generation

ANTLR will optimize lookahead tests by generating a switch statement instead of a series of
if/else tests for rules containing a sufficiently large number of alternates whose lookahead is
strictly LL(1). The option codeGenM akeSwitchThreshold controls this test. Y ou may want
to change this to control optimization of the parser. Y ou may also want to disableit entirely
for debugging purposes, by setting it to alarge number:

cl ass P extends Parser;
options { codeGenMakeSwi t chThr eshol d=999; }

codeGenBitsetTestThreshold: controlling code generation

ANTLR will optimize lookahead tests by generating a bitset test instead of an if statement,
for very complex lookahead sets. The option codeGenBitsetTestThreshold controls this test.
Y ou may want to change this to control optimization of the parser:

cl ass P extends Parser:;
/'l make bitset if test involves five or nore terns
options { codeGenBitset Test Threshol d=5; }

Y ou may also want to disable it entirely for debugging purposes, by setting it to alarge
number:

cl ass P extends Parser:;
options { codeCGenBitset Test Thr eshol d=999; }

buildAST: Automatic AST construction

In aParser, you cantell ANTLR to generate code to construct ASTs corresponding to the
structure of the recognized syntax. The option, if set to true, will cause ANTLR to generate
AST-building code. With this option set, you can then use all of the AST-building syntax

and support methods.

In aTree-Parser, this option turns on "transform mode", which means an output AST will be
generated that is a transformation of the input AST. In atree-walker, the default action of
bui | dAST isto generate a copy of the portion of the input AST that is walked.
Tree-transformation is aimost identical to building an AST in a Parser, except that the input
isan AST, not a stream of tokens.

ASTLabelType: Setting label type

When you must define your own AST node type, your actions within the grammar will
require lots of downcasting from AST (the default type of any user-defined label) to your

http://www.antlr.org/doc/options.html (8 of 11) [8/10/2001 10:50:10 AM]

ANTLR Options

tree node type; e.g.,

decl : d:ID {M/AST t=(WAST) #d; }

This makes your code apain to type in and hard to read. To avoid this, use the grammar
option ASTLabel Type to have ANTLR automatically do casts and define labels of the
appropriate type.

cl ass ExprParser extends Parser;

options {
bui | dAST=t r ue;
ASTLabel Type = "M/AST";

}
expr : a:term;

The type of #a within an action is My AST not AST.

charVocabulary: Setting the lexer character vocabulary

ANTLR processes Unicode. Because of thisthis, ANTLR cannot make any assumptions
about the character set in use, else it would wind up generating huge lexers. Instead ANTLR
assumes that the character literals, string literals, and character ranges used in the lexer
constitute the entire character set of interest. For example, in this lexer:

class L extends Lexer;

A 'a';
B: 'b';
DAT: '0" .. '"9;

The implied character setis{ 'a, 'b,'0', '1','2, '3, '4','5','6', '7", '8, '9' }. This can produce
unexpected resultsif you assume that the normal ASCII character set is aways used. For
example, in:

class L extends Lexer;

A: 'a';

B: '"b';

DAT: '0 .. '9;

STRING '"' (~""")* '"';

The lexer rule STRING will only match strings containing 'a, 'b' and the digits, which is
usually not what you want. To control the character set used by the lexer, use the
char Vocbaul ary option. This example will use agenera eight-bit character set.

class L extends Lexer;
options { charVocabulary = "\3" ..'"\377"; }

This example uses the ASCI| character set in conjunction with some values from the
extended Unicode character set:

class L extends Lexer:;
options {

http://www.antlr.org/doc/options.html (9 of 11) [8/10/2001 10:50:10 AM]

ANTLR Options

charVocabulary = "\3 .."\377" | '"\ul000'..'\ulfff";

warnWhenFollowAmbig

[Warning: you should know what you are doing before you use this option. | deliberately
made it a pain to shut warnings off (rather than a single character operator) so you would not
just start turning off all the warnings. | thought for long time before implementing this exact
mechanism. | recommend a comment in front of any use of this option that explains why it
is ok to hush the warning.]

This subrule option is true by default and controls the generation of nondeterminism
(ambiguity) warnings when comparing the FOLLOW lookahead sets for any subrule with an
empty alternative and any closure subrule such as (..)+ and (...)*. For example, the
following simple rule has a nondeterministic subrule, which arises from alanguage
ambiguity that you could attach an EL SE clause to the most recent IF or to an outer |F
because the construct can nest.

st at : "if" expr "then" stat ("else" stat)?

| | D ASSI GN expr SEM
Because the language is ambiguous, the context-free grammar must be ambiguous and the
resulting parser nondeterministic (in theory). However, being the practical language folks
that we are, we all know you can trivially solve this problem by having ANTLR resolve
conflicts by consuming input as soon as possible; | have yet to see a case where this was the
wrong thing to do, by theway. This option, when set to false, merely informs ANTLR that
it has made the correct assumption and can shut off an ambiguity related to this subrule and
an empty alternative or exit path. Hereisaversion of the rule that does not yield a warning
message:

st at : "I f" expr "then" stat

/'l standard if-then-else anbig
options {

war nWhenFol | owAnbi g=f al se;
}

: "el se" stat
)?
| | D ASSI GN expr SEM

One important note: This option does not affect non-empty alternatives. For example, you
will still get awarning for the following subrule between alts 1 and 3 (upon lookahead A):

(

options {
war nWhenFol | owAnbi g=f al se;
}
A
B

http://www.antlr.org/doc/options.html (10 of 11) [8/10/2001 10:50:10 AM]

ANTLR Options
| A
)
Further, this option isinsensitive to lookahead. Only completely empty alternatives count as

candidate alternatives for hushing warnings. So, at k=2, just because ANTLR can see past
alternatives with single tokens, you still can get warnings.

Command Line Options

-0 outputDir |specify output directory where all output generated.
-glib
supergramar Fi | e

Specify afile with a supergrammar for the generated file.

launch the ParseView debugger upon parser invocation. Unless
you have downloaded and unzipped the debugger over the top
of the standard ANTLR distribution, the code emanating from
ANTLR with this option will not compile (likewise for Swing).

generate an html file from your grammar without actions and so
- ht on. Thisisonly aprototype, but seemsto do something
useful. It only worksfor parsers, not lexers or tree parsers.

generate atext file from your grammar with alot of debugging

- debug

-di agnostic

tracelreeWal ker |havetreewa|ker rules call tracel n/traceOut.

info.
|- trace |have all rules call tracel n/traceOut.
|-traceParser Ihave parser rules call tracel n/traceOut.
|- tracelLexer |have lexer rules call tracel n/traceOut.

Version: $Id: //depot/code/org.antlr/test/antlr-2.7.0all/doc/options.html#3 $

http://www.antlr.org/doc/options.html (11 of 11) [8/10/2001 10:50:10 AM]

	antlr.org
	ANTLR Reference Manual
	ANTLR 2.7.1 Release Notes
	ANTLR Specification: Meta Language
	Lexical Analysis with ANTLR
	ANTLR Tree Parsers
	ANTLR Specification: Vocabularies
	Error Handling and Recovery
	ANTLR Specification: Run-time
	C++ Notes
	ANTLR Specification: Run-time
	ANTLR 2.00 Tree Construction
	ANTLR Specification: Grammar Inheritance
	ANTLR Options

