
PerlCyc

Pathway Tools Workshop
SRI, Menlo Park
June 12-16, 2006

Lukas Mueller
Cornell University

http://sgn.cornell.edu/

• Database of Solanaceae plants and related
organisms

• tomato, potato, eggplant, pepper, petunia
• tobacco, Atropa belladonna
• Coffee
• Dealing with many organisms: Clade Oriented

Database (COD)
• Data types: Genetic maps, EST sequences,

unigene builds, gene families, pathway data,
tomato genome data

PerlCyc

• What is it?
– A Perl interface for Pathway Tools

• What is Perl?
– Practical Extraction and Reporting Language
– Language of the “C” family, developed from

UNIX shell languages (yes, it's ugly!)
– Excellent text handling capabilities
– Object oriented models available
– Popular in web programming and bioinformatics

Motivation

• Only few bioinformaticians know Lisp
• Make Pathway-Tools more accessible to the

bioinformatics community
• Most bioinformaticians know Perl and/or

Java.

Perlcyc features

• Allows to make calls to GFP and Pathway
Tool functions from Perl

• Simple implementation
– Written as a easy-to-use Perl module using

general Object Perl conventions
• Secure

– User needs access to file system

PerlCyc implementation

perlcyc.pm
(perl to lisp
translation)

External
access

daemon

Perl Script
(client)

Socket
Connection

Pathway-Tools
(server)

PerlCyc API

• Implements both
– Generic Frame Protocol (GFP) functions
– Pathway Tools functions

• Function name conventions:
– Replace dashes with underlines
– �Replace question marks with ‘_p’

Data type equivalents

• Note: Perl is not strongly typed!
– Lisp list = Perl array
– Lisp string = Perl scalar
– Lisp symbol = Perl scalar
– Lisp boolean (“NIL” | “t”) = Perl scalar (NIL|t)
– Lisp integer, etc = Perl scalar

PerlCyc limitations

• Only one PerlCyc script can be running at a
time (socket connection)

• Works only on UNIX
• Optional parameters to functions are not

supported
• Certain functions may not be available
• It's just a thin layer - frames are not

implemented in Perl

Installing and running PerlCyc

• Requirements:
– UNIX installation of Pathway Tools
– Perl 5.6 or later

• Installation
– Download PerlCyc from TAIR

http://arabidopsis.org/biocyc/perlcyc/

– Follow installation instructions
– Start pathway-tools using the -api option
– Write and run PerlCyc perl scripts

Usage examples

#!/usr/bin/perl
use strict;
use perlcyc;
my $cyc = perlcyc -> new(“ARA”);
my @result = $cyc -> most_pathway_tools_functions();
do something with results...
....
at the end of script, clean up
$cyc -> close();

Sample Scripts

#!/usr/bin/perl
use strict;
use perlcyc;

my $cyc = perlcyc -> new(“ARA”);
my @reactions = $cyc -> all_rxns();

foreach my $reaction (@reactions) {
print "$reaction\n";
my $rname = $cyc -> get_slot_value($reaction, “in-pathway
print "$rname\n";

}
$cyc->close();

#!/usr/bin/perl
use strict;
use perlcyc;
my $cyc = perlcyc -> new(“ARA”);
foreach my $g ($cyc->get_class_all_instances("|Genes|"))

{
my $dblink = $cyc -> get_slot_value($g, "DBLINKS");
print "DBLINKS: $dblink\n";

}

use strict;
my $added =0; my $genesprocessed=0;
my $cyc = perlcyc -> new ("ARA");
my @genes = $cyc -> get_class_all_instances ("|Genes|");
print "Adding TAIR links...\n";
foreach my $g (@genes) {

$genesprocessed++;
my $common_name = $cyc -> get_slot_value($g,

"common-name");
if ($common_name && ($common_name ne "NIL")) {

$cyc -> put_slot_value ($g, "dblinks", "(TAIR:
\"$common_name\")");

$added++;
}
if ($genesprocessed % 1000 == 0) { print

"$genesprocessed\r";}
}
print "Processed $genesprocessed genes and added

JavaCyc

• A similar interface for Java
• Written by Thomas Yan (TAIR)
• Available from TAIR

Future directions

• Improvements to address limitations
• Support for more languages
• Library of PerlCyc scripts

Acknowledgments

• Peter Karp, SRI
• Suzanne Paley, SRI
• Sue Rhee, TAIR
• Danny Yoo, TAIR

Perl scripting as a spectator sport

	PerlCyc��Pathway Tools Workshop�SRI, Menlo Park� June 12-16, 2006��Lukas Mueller� Cornell University�http://sgn.cornell.edu/�
	PerlCyc
	Motivation
	Perlcyc features
	PerlCyc implementation
	PerlCyc API
	Data type equivalents
	PerlCyc limitations
	Installing and running PerlCyc
	Usage examples
	Sample Scripts
	JavaCyc
	Future directions
	Acknowledgments
	Perl scripting as a spectator sport

