Debugging the Bug

Lessons learned from developing integrating EcoCyc and iJR904

Jeremy Zucker Dana-Farber Cancer Institute Harvard Medical School

Automated Metabolic Flux Analysis Pipeline

The project

- The team
- The system
- The questions
- The approach
- The lessons learned
- The results
- The next steps

The Team

- SRI: Markus and Ingrid
- Palsson lab: Adam Feist and Jennifer Reed
- Northwestern: Chris Henry
- York University: Gavin Thomas
- BioPAX: Alan Ruttenberg and Jeremy Zucker

The System: E. coli K12 MG1655

Model	Year(s)	No. of metabolic reactions	No. of metabolites
Majewski and	1990	14	17
Domach			
Varma and Palsson	1993-	146	118
	1995		
Pramanik and	1997-	300 (317)	289 (305)
Keasling	1998		
Edwards and	2000	720	436
Palsson			
Covert and Palssonc	2002	113	77
Reed and Palsson	2003	929	626

The System: E. coli K12 MG1655

- *KB: EcoCyc 9.5*
- Goal: Representation of metabolic knowledge
- Maturity: 13+ years
- Size:
 - 4480 genes
 - 1075 enzyme rxns
 - 977 compounds

- Model: iJR904
- Goal: Constraintbased metabolic flux model
- Maturity: 13+ years
- Size:
 - 904 genes
 - 929 enzyme rxns
 - 626 compounds

The Goal

- Map iJR904 compounds to EcoCyc compounds
- Map iJR904 reactions to EcoCyc reactions
- Get a working Flux balance model for EcoCyc
- Create FBA enabled BioCyc PGDB's
- Create a disciplined approach to data integration.

The approach

- Automated mapping of compounds
- Semi-automated mapping of compounds
- Manual mapping of compounds
- Automated mapping of reactions
- Semi-automated mapping of reactions
- Manual mapping of reactions

Lessons Learned

- "Standard is better than best"
- "A good representation is the key to good problem solving"--Patrick Winston
- "1+1 is equal but not identical to 2"
- "When it comes to data cleaning, there is no such thing as a free lunch" --Sir Tim Berners-Lee
- "You don't have to do it all by yourself"— Matt Temple

"Standard is better than best"

- Utilize W3C Web Ontology Language (OWL)
- Utilize open source description logic reasoners (Pellet, FaCT++)
- Simplify DL syntax with lisp macros.
- Utilize BioPAX/Pathway tools schema where possible, extend when not possible.

What is OWL?

- 3 flavors: OWL-Lite, OWL-DL, OWL-Full
- Description Logic. Very similar to Framebased systems
- Description logic reasoners are sound and complete
- A standard in flux (OWL 1.1 coming out soon)

"A good representation is the key to good problem solving"--Patrick Winston

- CAS and KEGG ID's are supposed to be unique identifiers, so make the unificationXref property inverse functional
- Compounds are classes
- Reactions can be defined in terms of compounds

1+1is equal but not identical to 2

- When are two reactions equal?
 - Same EC number?
 - When does one reaction subsume another?
 - Same enzymes catalyze?
- When are two genes equal?
 - dut vs dfp
- When are two compounds equal?
 - Same CAS number? Same KEGG ID?
 - structural isomers: Glucose vs. Fructose
 - enantiomers: D-Glucose vs L-Glucose
 - Beta-D-glucose vs Alpha-D-glucose

integration, there's no such thing as a free lunch"

- Bugs in SAS THAK Berners dife
- Merged reactions hisD
- Reactions in comments
- Multiple functions of the same gene
- Missing compound mappings

How do I use a DL-reasoner?

 Pellet: Java, accessible from ABCL:

```
(define-ontology simple-class-
   hierarchy ()
  (class !A :partial)
  (class !B :partial)
  (class !C :partial)
  (sub-class-of !B !A)
  (sub-class-of !C !B)
(describe-entity !C (kb simple-
   class-hierarchy))
Direct Superclasses: ex:B
All Superclasses: ex:B, ex:A
Axioms:
(aubalaga of \|ox C\| \|ox B\|)
```

• FaCT++: C++, with lisp syntax interface

(equal_c |trans-rxn-157| (and (atmost 2 left) (atleast 1 left |phospho-enol-pyruvate|) (atleast 1 left |glc|) (atmost 2 right) (atleast 1 right |glc-6-p|) (atleast 1 right |pyruvate|)))

Reasoning with FaCT++

```
ecocyc:ribonucleoside-dip-reducti-rxn
 (and (atmost 3 left)
      (atleast 1 left |ecocyc:ox-thioredoxin|)
      (atleast 1 left |ecocyc:water|)
      (atleast 1 left |ecocyc:deoxy-ribonucleoside-diphosphates|)
      (atmost 2 right)
      (atleast 1 right |ecocyc:red-thioredoxin|)
      (atleast 1 right |ecocyc:ribonucleoside-diphosphates|)))
(equal c |ijr904:RNDR3|
   (and (atleast 1 right |ijr904:cdp|)
    (atleast 1 right |ijr904:trdrd|)
    (atmost 2 right)
    (atleast 1 left |ijr904:dcdp|)
    (atleast 1 left |ijr904:h20|)
    (atleast 1 left |ijr904:trdox|)
    (atmost 3 left)))
(equal c |ijr904:trdrd| |ecocyc:red-thioredoxin|)
(equal c |ijr904:trdox | |ecocyc:ox-thioredoxin |)
(equal c |ijr904:dcdp| |ecocyc:dcdp|)
(equal c |ijr904:h20| |ecocyc:water|)
(implies |ecocyc:dcdp| |ecocyc:deoxy-ribonucleoside-diphosphates|)
(implies |ecocyc:cdp| |ecocyc:ribonucleoside-diphosphates|)
=> (:SUB "ijr904:RNDR3" :SUPER ("ecocyc:ribonucleoside-dip-reducti-rxn")))
```

The results (so far)

- 589 out of 773 iJR904 compounds manually mapped to EcoCyc
- 41 errors in EcoCyc compound crossreferences
- 80 errors in iJR904 compound crossreferences
- 637 out of 937 iJR904 reactions automatically mapped to EcoCyc.
- 83 reaction subsumptions

Bugs in Network structure revealed by Forward and Backward chaining

Nutrient analysis: Forward-chaining

Metabolic flux analysis assumptions

From annotated genomes to metabolic flux models and kinetic parameter fitting Daniel Segrè et al., *Omics*, 7:301-16 (2003).

First, analyze the steady state-behavior

All metabolic capabilities in steady states are composed of elementary flux modes, which are the minimal sets of enzymes that can each generate valid steady states. --**Trends Biotechnol 1999 Feb;17(2):53-60**

Wild-type FBA Prediction

Mutant FBA Prediction

Mutant MOMA prediction

Classifying the bugs

- bugs in the data (syntax)
 - Mass balance:
 - Thermodynamics (Gibbs)
 - Missing chemical formulas
 - Missing/incorrect gene (Errors in Genome annotation)
 - Missing/incorrect reactions (Orphaned enzymes)
 - Missing pathways (pathway hole filling)
- bugs in the data representation (semantics)
 - Identity problem: Palsson integration, Synonyms, fuzzy names
 - insufficient expressivity: Polymerization, generalized reactions, Transport protein database, SBML
 - Provenance (multiple source problem)
- Bugs in the model assumptions with respect to experiment
 - Growth: FBA vs. MOMA vs. ROOM
 - Internal fluxes: Isotope labelling
 - Epistasis
 - Minimal nutrient sets
 - Expression, Protein levels, and Metabolite concentrations

Diagnose and debug the bug

- Fixing bugs in the data (syntax)
 - Mass balance:
 - balance-p diagnosis uses atomic balances for C S N and P
 - Provenance used to fix the problem with stoichiometry
 - Thermodynamics: include Gibbs free energy
 - Diagnosis: Can be calculated empirically
 - Missing gene:
 - Diagnosis: Network--filling
 - Orphaned enzymes
 - Missing/incorrect gene: (Errors in Genome annotation)
 - Diagnosis: Gene-enzyme-reaction predicate in conjuction with knockout experiments
 - Missing/incorrect reactions (Orphaned enzymes)
 - Diagnosis: Nutrient analysis, backward chaining
 - Missing pathways
- Bugs in the data representation (semantics)
 - Identity problem: Palsson integration, Synonyms, fuzzy names
 - insufficient expressivity: Polymerization, generalized reactions, Transport protein database, SBML
 - Provenance (multiple source problem)
- Bugs in the model assumptions with respect to experiment
 - Growth: FBA vs. MOMA vs. ROOM
 - Internal fluxes: Isotope labelling
 - Epistasis
 - Minimal nutrient sets
 - Expression, Protein levels, and Metabolite concentrations

Debugging bugs

- bugs in the data (syntax)
 - Mass balance:
 - Thermodynamics (Gibbs)
 - Missing chemical formulas
 - Missing/incorrect gene (Errors in Genome annotation)
 - Missing/incorrect reactions (Orphaned enzymes)
 - Missing pathways (pathway hole filling)
- bugs in the data representation (semantics)
 - Identity problem: Palsson integration, Synonyms, fuzzy names
 - insufficient expressivity: Polymerization, generalized reactions, Transport protein database, SBML
 - Provenance (multiple source problem)
- Orphaned enzymes
 - Errors in genome annotation
 - Enzyme genomics project

Bug class	Diagnosis	Fix