An Introduction to Flux Balance Analysis Using Pathway/Genome Databases

Ranjan Srivastava SRI June 13th, 2006

- Identification of potential drug targets for pathogens
- Development of inhibitory RNA therapeutics

- Identification of potential drug targets for pathogens
- Development of inhibitory RNA therapeutics

- Identification of potential drug targets for pathogens
 - Genome-scale flux balance analysis
- Development of inhibitory RNA therapeutics

- Identification of potential drug targets for pathogens
 - Genome-scale flux balance analysis
 - Identification of appropriate metabolic objective functions
- Development of inhibitory RNA therapeutics

- Identification of potential drug targets for pathogens
 - Genome-scale flux balance analysis
 - Identification of appropriate metabolic objective functions
 - Automated flux balance analysis
- Development of inhibitory RNA therapeutics

- Identification of potential drug targets for pathogens
 - Genome-scale flux balance analysis
 - Identification of appropriate metabolic objective functions
 - Automated flux balance analysis
 - Dynamic flux balance analysis
- Development of inhibitory RNA therapeutics

Metabolic Chokepoints

• 274/377 chokepoints identified for malaria

How many of those pathways are active during virulence?

History of Anthrax

- Ancient Egypt -Plague of Boils (1500 BC)
- Known to ancient Greeks & Romans (Homer ~ 1200 BC, Virgil ~ 60 BC)
- Mentioned in early Hindu literature (500 BC)

B. anthracis Molecular Biology

Genome-scale Flux Analysis

 \overline{X} = metabolites $\frac{d\overline{X}}{dt} = \overline{r} - \mu \overline{X}$ \overline{r} = reaction $\overline{0} = \overline{r}$ μ = growth rate $\overline{0} = \overline{r}$

$$\overline{\overline{S}}$$
 = stoichiometric matrix
 \overline{v} = metabolic flux vector

$$\overline{v} = \overline{\overline{S}^T \overline{v}}$$

$$\overline{0} = \overline{\overline{S}^T v}$$

Feasible Growth Regime for *B*. *anthracis*

Potential objective functions

- Maximization of growth rate
- Minimization of redox potential
- Minimization of ATP production
- Minimization of nutrient uptake
- Minimization of acetate overflow

Predicted Growth Rate for *B. anthracis*

Glucose Uptake Rate (mmole/gDW/hr)

Predictions for Growth on Minimal M9 Media

Why automated FBA?

- Generate FBA on the fly
- Keep up to date with latest PGDB
- Comparative analysis
- Generate a reference FBA (*E. coli*)
- Ideally, shouldn't need to be an "expert" to carry out FBA

Issues

- Reactions listed twice under different names or EC#s
- 2. Reactions with non-specific metabolites, such as "lipoprotein" or "enzyme"
- 3. Improper stoichiometry
- 4. Many reactions are not hydrogen balanced
- 5. Reversibility
- 6. Incomplete EC#s
- 7. Need more transport reactions

Acknowledgements

Graduate Students

- Nathan Demaris
- Robert Fournier
- Rishi Jain
- Andrea Knorr
- Ozlem Yilmaz

<u>Undergrads</u>

- Chris Ambler
- Jon Sperry

Collaborators

- Kazem Kazerounian
- Ken Noll
- Ken Reardon
- Thomas Wood