SYMBOLIC SYSTEMS BIOLOGY

USING FORMAL LOGICS TO MODEL AND REASON ABOUT BIOLOGICAL SYSTEMS

Carolyn Talcott SRI International August 2009

PLAN

Symbolic systems biology
Pathway Logic
Representation in PL
Computing with PL models
PL + BioCyc -- first steps

Minimal nutrient set computation

SYMBOLIC SYSTEMS BIOLOGY

SYMBOLIC SYSTEMS BIOLOGY

- Symbolic -- represented in a logical framework
 - Systems -- how things interact and work together, integration of multiple parts, viewpoints and levels of abstraction

Specific Goals:

- Develop formal models that are as close as possible to domain expert's mental models
- Compute with, analyze and reason about these complex networks
- New insights into / understanding of biological mechanisms

LOGICAL FRAMEWORK

- Making description and reasoning precise
- Language
 - for describing things and/or properties
 - given by a signature and rules for generating expressions (terms, formulas)
 - <u>Semantic model</u> -- mathematical structure (meaning)
 - interpretation of terms
 - satisfaction of formulas: M |= wff
- Reasoning -- rules for inferring valid formulae
- Symbolic model -- theory (axioms) used to answer questions

EXECUTABLE SYMBOLIC MODELS

- Describe system states and rules for change
- From an initial state, derive a transition graph
 - nodes -- reachable states
 - edges -- rules connecting states
- Path -- sequence of nodes and edges in transition graph (computation / derivation)
- Execution strategy -- picks a path

SYMBOLIC ANALYSIS I

Static Analysis

- how are elements organized -- sort hierarchy
- control flow / dependencies
- detection of incompleteness
- Forward simulation from a given state (prototyping)
 - run model using a specific strategy
 - fast, first exploration of a model
- Forward collection
 - find potentially reachable states

SYMBOLIC ANALYSIS II

Search transition graph from a given state S

- Forward
 - find ALL possible outcomes
 - find only outcomes satisfying a given property
- Backward
 - find initial states leading to S
- Backward collection
 - find transitions that contribute to reaching S

SYMBOLIC ANALYSIS III

Model checking

- determines if all pathways from a given state satisfy a given property, if not a counter example is returned
- example property:
 - molecule X is never produced before Y
- counter example:
 - pathway in which Y is produced after X

SYMBOLIC ANALYSIS IV

Constraint solving

- Find values for a set of variables satisfying given constraints -- x + y < 1, P or Q
- MaxSat deals with conflicts
 - weight constraints
 - find solutions that maximize the weight of satisfied constraints
- Finding possible steady state flows (flux) of information or chemicals through a system can be formulated as a constraint problem.

A SAMPLING OF FORMALISMS

- Rule-based + Temporal logics
- Petri nets + Temporal logics
- Membrane calculi -- spatial process calculi / logics
- Statecharts + Live sequence charts
- Stochastic transitions systems and logics
- Hybrid Automata + Abstraction

PATHWAY LOGIC (PL) REPRESENTATION OF SIGNALING

http://pl.csl.sri.com/

ABOUT PATHWAY LOGIC

Pathway Logic (PL) is an approach to modeling biological processes as executable formal specifications (in Maude) The resulting models can be queried

- using formal methods tools: given an initial state
 - execute --- find some pathway
- search --- find all reachable states satisfying a given property
 model-check --- find a pathway satisfying a temporal formula
 using reflection
 - find all rules that use / produce X (for example, activated Rac)
 - find rules down stream of a given rule or component

SIGNALING PATHWAYS

- Signaling pathways involve the modification and/or assembly of proteins and other molecules within cellular compartments into complexes that coordinate and regulate the flow of information.
- Signaling pathways are distributed in networks having stimulatory (positive) and inhibitory (negative) feedback loops, and other concurrent interactions to ensure that signals are propagated and interpreted appropriately in a particular cell or tissue.
- Signaling networks are robust and adaptive, in part because of combinatorial complex formation (several building blocks for forming the same type of complex), redundant pathways, and feedback loops.

ABOUT REWRITING LOGIC

- Rewriting Logic is a logical formalism that is based on two simple ideas
 - states of a system are represented as elements of an algebraic data type
 - the behavior of a system is given by local transitions between states described by rewrite rules
- Rewrite theory: (Signature, Labels, Rules)
 - Signature: (Sorts, Ops, Eqns) -- data, system state
 - Rules have the form label : t => t' if cond
- Rewriting operates modulo equations -- generates computations/pathways

PATHWAY LOGIC ORGANIZATION

A Pathway Logic (PL) system has four parts

- Theops --- sorts and operations
- Components --- specific proteins, chemicals ...
- Rules --- signal transduction reactions
- Dishes --- candidate initial states

Knowledge base: Theops + Components + Rules Equational part: Theops + Components

- A PL cell signaling model is generated from
 - a knowledge base
 - an initial state (aka dish)

THEOPS

Specifies sorts and operations (data types) used to represent cells:

- Proteins and other compounds
- Complexes
- Soup --- mixtures / solutions / supernatant ...
- Post-translational modifications
- Locations --- cellular compartments refined
- Cells --- collection of locations
- Dishes --- for experiments, think Petri dish

SAMPLE FROM COMPONENTS

```
sort ErbB1L . subsort ErbB1L < Protein . *** ErbB1 Ligand</pre>
op Eqf : -> ErbB1L [metadata "(\
  (spname EGF HUMAN) \
  (spnumber P01133)\
  (hugosym EGF) \
  (category Ligand) \
  (synonyms \"Pro-epidermal growth factor precursor, EGF\" \
            \"Contains: Epidermal growth factor, Urogastrone \"))"].
op EqfR : -> Protein [metadata "(\
  (spname EGFR HUMAN) \
  (spnumber P00533)
  (hugosym EGFR) \
  (category Receptor) \
  (synonyms \"Epidermal growth factor receptor precursor\" \
            \"Receptor tyrosine-protein kinase ErbB-1, ERBB1 \"))"].
```

```
op PIP2 : -> Chemical [metadata "(\
  (category Chemical)\
  (keggcpd C04569)\
  (synonyms \"Phosphatidylinositol-4,5P \" ))"].
```


RULE EXECUTION AS PETRI NETS

rasDish =rule1=> rasDish1 =rule5=> rasDish2 =rule13=> rasDish3

Ovals are occurrences -- components in locations. Dark ovals are present in the current state (marked). Squares are rules.

Dashed edges connect components that are not changed.

THE PATHWAY LOGIC ASSISTANT (PLA)

- Provides a means to interact with a PL model
- Manages multiple representations
 - Maude module (logical representation)
 - PetriNet (process representation for efficient query)
 - Graph (for interactive visualization)
- Exports Representations to other tools
 - Lola (and SAL model checkers)
 - Dot -- graph layout
 - JLambda (interactive visualization, Java side)
 - SBML (xml based standard for model exchange)

A SIMPLE QUERY LANGUAGE

 Given a Petri net with transitions P and initial marking O (for occurrences) there are two types of query

subnet

- findPath a computation / unfolding
- For each type there are three parameters
 - G: a goal set---occurrences required to be present at the end of a path
 - A: an avoid set---occurrences that must not appear in any transition fired
 - H: as list of identifiers of transitions that must not be fired
- findPath returns a pathway (transition list) generating a computation satisfying the requiremments.
- subnet returns a subnet containing all (minimal) such pathways.

PATHWAY EXAMPLES EgfR-CLm Egf-Out Egf-Out EgfR-CLm Grb2-CLc Egf:EgfR-act-CLm EgfR-CLm Egf-Out Grb2-CLc Egf:EgfR-act-CLm 5 5 Sos1-CLc Grb2-reloc-CLi Gab1-CLc Egf:EgfR-act-CLm Grb2-CLc Grb2-reloc-CLi Gab1-CLc 5 Gab1-Yphos-CLi Pi3k-CLc Sos1-reloc-CLi Sos1-CLc Grb2-reloc-CLi Pi3k-CLc Gab1-Yphos-CLi 8 13 8 Pi3k-act-CLi Sos1-reloc-CLi Pi3k-act-CLi

FULL MODEL OF EGF STIMULATION (by Merrill Knapp)

THE ERBB NETWORK (CARTOON FORM)

Egf stimulation of the Mitogen Activated Protein Kinase (MAPK) pathway.

 $\mathsf{Egf} \to \mathsf{EgfR} \to \mathsf{Grb2} \to \mathsf{Sos1} \to \mathsf{Ras} \to \mathsf{Raf1} \to \mathsf{Mek} \to \mathsf{Erk}$

- Egf (EGF) binds to the Egf receptor (EgfR) and stimulates its protein tyrosine kinase activity to cause autophosphorylation, thus activating EgfR.
- The adaptor protein Grb2 (GRB2) and the guanine nucleotide exchange factor Sos1 (SOS) are recruited to the membrane, binding to EgfR.
- The EgfR complex activates a Ras family GTPase
- Activated Ras activates Raf1, a member of the RAF serine/threonine protein kinase family.
- Raf1 activates the protein kinase Mek (MEK), which then activates Erk (MAPK)

MODELING METABOLIC PROCESSES (work of Malabika Sarker)

MODEL ACTION OF DRUGS

- Problen: Identify candidate drug targets in mycobacteria
- Idea: integrate screening data, molecular structure models, and metabolic models
- Case study
 - curation of PL model of mycolic acid synthesis (including drug action)
 - importing PGDBs into PL

MYCOLIC ACID FRAGMENT SHOWING INHIBITION OF INHA

IMPORTING PGDBS INTO PL

- Map compounds to PL components
- Start with reaction and enzrxn files
- Extract information for PL rules
 - Ihs, rhs, enzyme
 - (determine direction)
- Convert to PL syntax
- Apply to M. tuberculosis H37Rv PGDB

PEPTIDO-GLYCAN PATHWAY

From Biocyc

Assembled in PL

MINIMAL NUTRIENT SETS Diet planning for Microbes

THE PROBLEM

 Given a model of metabolism for an organism (microbe), determine minimal sets of nutrients that will support growth.

- Model -- network of metabolic reactions (R)
- Nutrients -- transportables (T), compound that have transporter reactions

Growth -- production of essential compounds (E)

• A subset N of T is a <u>nutrient set</u> if E is R-producible from N

N is <u>minimal</u> if no proper subset is a nutrient set

A LITTLE MATH

- S stochiometric matrix for R S_{ij} coef of C_i in R_j
- r a vector of relative firing rates, r_j the rate for R_j
- $\mathbf{p} = S \mathbf{r}$ -- production \mathbf{p}_i is the production rate of C_i

•
$$\mathbf{p}_i = S_{i1} \mathbf{r}_1 + + S_{ik} \mathbf{r}_k$$

Basic constraints

- **r**_i >= 0 -- reactions run forward
- $\mathbf{p}_i > 0$ if C_i in E
- $\mathbf{p}_i \ge 0$ if C_i not in E or N

SIMPLE EXAMPLE

• $R_1: A + B \rightarrow C + D$, $R_2: C + F \rightarrow B + E$

• E is the essential compound, A, F transportables

Constraints $r_1, r_2 \ge 0$ $B: -r_1 + r_2 \ge 0$ (> 0) $C: r_1 - r_2 \ge 0$ (> 0) $E: r_2 \ge 0$

 Stable growth: If a non-essential, non-transportable such as B or C is drained away, the system will fail to grow.

 Add constraint that says: if a compound C_j not in E or T is used (a reactant), it must be produced (p_j > 0).

PROBLEM SIMPLIFICATION

- Impossibility elimination
 - drop reactions that have reactants that can not be produced (or transported)
 - (uses forward collection)
- Uselessness elimination
 - drop useless compounds and reactions whose products are all useless,
 - the useful compounds are found by backwards propagation from E
 - (uses backwards collection)

THE SEARCH FOR MINIMAL NUTRIENT SETS

Define nutset(N) for N a subset of T by

nutset(N) = true if the constraints for N are satisfiable

= false owise

- Use a constraint solver to determine if there is a solution
- Find one minimal N: start with N = T and eliminate elements until no mare can be eliminated.

 Finding all minimal Ns requires some cleverness to do it feasibly. Our approach uses a representation of boolean functions called BDDs (binary decision diagrams) to search for extensions of a set of minimal solutions.

EQUIVALENCE AND REDUCED SOLUTIONS

- <u>Problem</u>: The system is highly underconstrained leading to a large number of minimal nutrient sets (over 1000).
- <u>Solution</u>: Define two nutrients A,B to be equivalent if whenever A appears in a minimal nutrient set then replacing A by B yields another nutrient set, and conversely.
- Reduced nutrient sets: equivalence class representatives

Benefit:

- Small number of solutions
- Insights into the role of each nutrient

DIET PLANNING FOR E. COLI

Model (from EcoCyc version 13.5)

- 160 transportables
- 1378 compounds
- 2251 reactions
- 36 essentials
- Result
 - 1156 solutions
 - 9 reduced solutions

TEN EQUIVALENCE CLASSES

- 4 unitary
 - Na+ (?)
 - HPO4 (P)
 - nicotinamide mononucleotide (CNP)
 - 2,3-diketo-L-gulonate (C)
- 3 with two elements
 - sulfate/taurine (S)
 - L-methionine/glutathione (CNS)
 - beta-d-glucose-6-phosphate (CP)

- 1 with nine elements
 - L-valine/NH4+ .. (N)
- 2 very large
 - fumarate/malate ... (C)
 - cytidine/cyanate ... (CN)

SOME REDUCED SOLUTIONS

- # Reduced solution 7
 - (CCO-PERI-BAC@VAL "L-valine" "C5H11NO2")
 - N source -- equivalent to ammonia, nitrite
 - (CCO-PERI-BAC@GLC-6-P "beta-D-glucose-6-phosphate" "C6H11O9P")
 - (CCO-PERI-BAC@SULFATE "sulfate" "04S")
- # Reduced solution 1
 - (CCO-PERI-BAC@SULFATE "sulfate" "O4S")
 - (CCO-PERI-BAC@NICOTINAMIDE_NUCLEOTIDE "nicotinamide mononucleotide" "C11H14N2O8P")

CPN source, singleton, too complex to be practical

MYSTERY SOLUTIONS

- # Reduced solution 5 --- mystery -- cytidine ~ cyanate
 - (CCO-PERI-BAC@CYTIDINE "cytidine" "C9H13N3O5")
 - (CCO-PERI-BAC@SULFATE "sulfate" "O4S")
 - (|CCO-PERI-BAC@Pi| "phosphate" "HO4P")
- # Reduced solution 9 --- what is the role of Na+?
 - (CCO-PERI-BAC@NA+ "Na+" "Na")
 - (CCO-PERI-BAC@VAL "L-valine" "C5H11NO2")
 - (CCO-PERI-BAC@SULFATE "sulfate" "04S")
 - (CCO-PERI-BAC@2-3-DIKETO-L-GULONATE "2,3-diketo-Lgulonate" "C6H7O7")
 - (|CCO-PERI-BAC@Pi| "phosphate" "HO4P")

LESSONS LEARNED

Analysis is a great way to debug a knowledge base.

- gaps in network
- missing participants
- wrong direction
- Explain unexpected growth conditions
 - Cross checks such as carbon balance
 - Witness information -- sample solution
- Some compounds have no known production pathway
 - Used fudge factors

THATS ALL FOLKS!