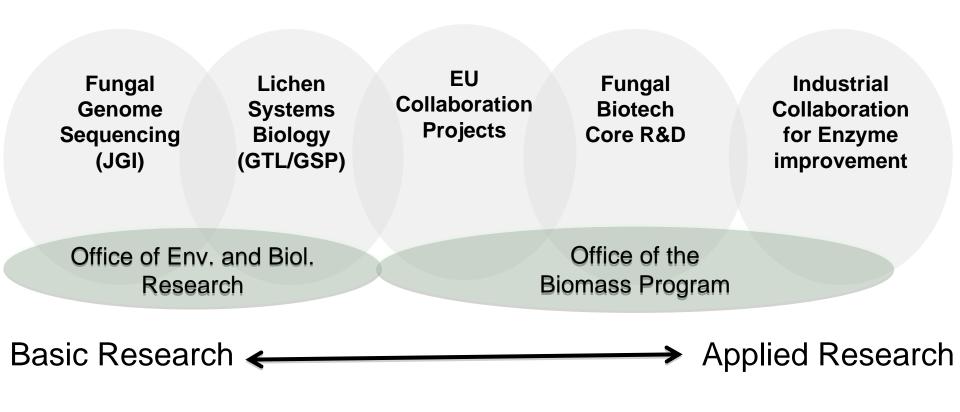
Integrating flux balance analysis of fungal genome-scale metabolic networks into metabolic engineering practice

2010 Pathway Tools Workshop

Jim Collett Chemical and Biological Process Development Group Pacific Northwest National Laboratory (PNNL) james.collett@pnl.gov


PNNL-SA-72908

Bioproducts, Sciences, & Engineering Lab at PNNL

Pacific Northwest

PNNL fungal research funded by the DOE

We experiment with filamentous fungi because they...

- Digest biomass
- Utilize C5 and C6 sugars
- Grow at low pH
- Produce enzymes & organic acids
- Produce ethanol
- Are a potential platform for Advanced Biofuels

PNNL/JGI Fungal Genome Sequencing Projects

Aspergillus aculeatus Aspergillus brasiliensis Aspergillus carbonarius (2) Aspergillus niger Aspergillus tubingensis Catenaria anguillulae Cochliobolus heterostrophus Coemansia reversa Conidiobolus coronatus Cryphonectria parasitica Gonapodya sp. Neurospora crassa Orbilia auricolor Orpinomyces sp. Phycomyces blakesleeanus Piromyces sp. Tremella mesenterica Trichoderma atroviride Trichoderma reesei Trichoderma reesei

Blue = PGDB and curation underway

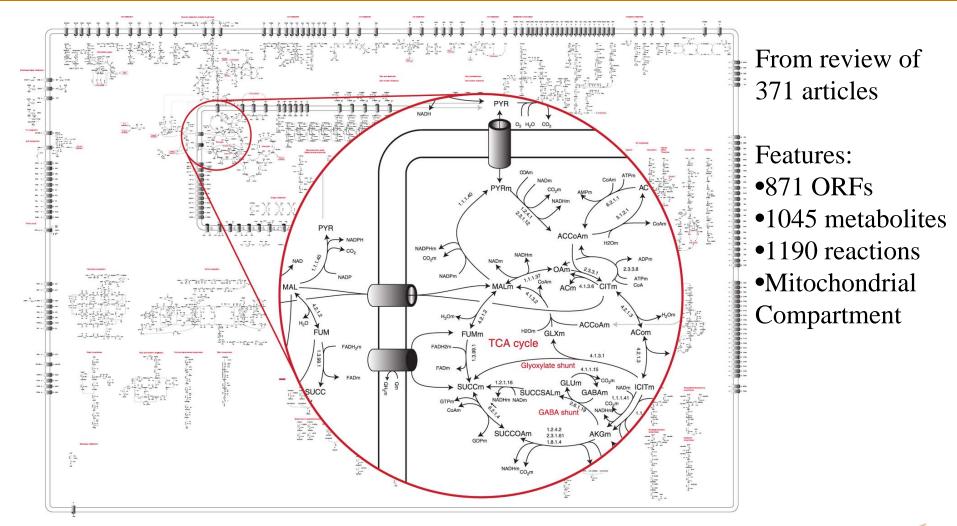
JGI genome-to-PFF pipeline built by Sebastian Jaramillo-Riveri

Fungal Genomics Core Research Projects

Genomics: Improved transformation for *A. niger and T. reesei.* Analysis *of A. niger* polyketide synthase (PKS) genes. SNV analysis of highly mutagnenized, cellulse overproducing *T. reesei* strains.

Proteomics: Analysis of *A. niger* mutant strains using an Orbitrap mass spectrometer.

Hyper-productivity and consolidated bioprocesses: Itaconic acid production in *A. terreus*.

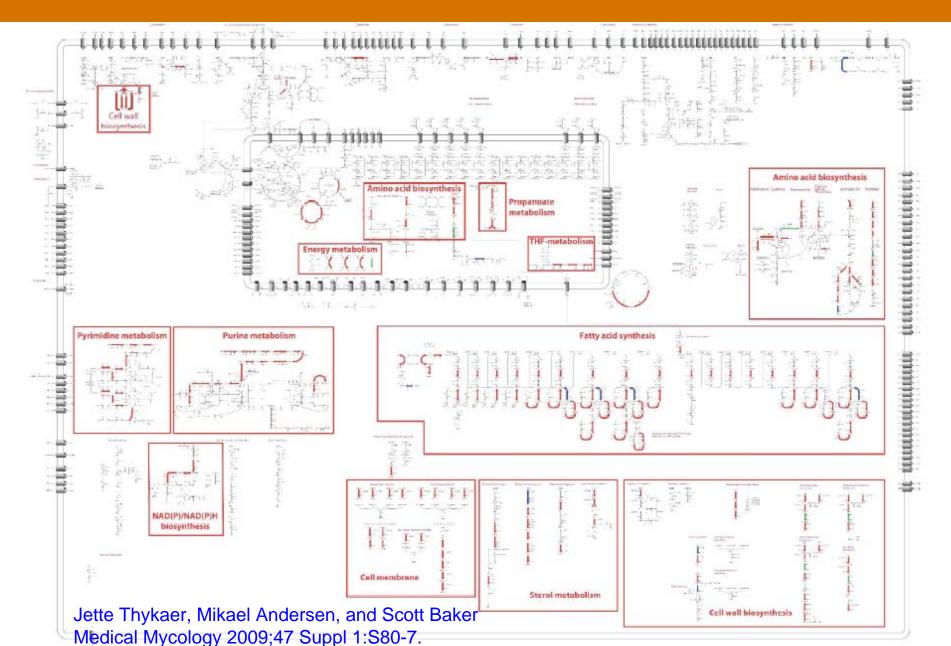

Pentose utilization in filamentous fungal: Study of pentose utilization during *A. oryzae fermentation*.

Alternative renewable fuels from fungi: Polyketide, isoprenoid and fatty acid biosynthesis for advanced hydrocarbon biofuels. NMR analysis of candidate biofuel precursor strains.

Metabolic Process Modeling and Data Integration


Aspergillus niger genome scale metabloic model from the Nielsen group at DTU/Chalmers

Mikael Rørdam Andersen,^{1*} Michael Lynge Nielsen,¹ and Jens Nielsen^{1a} Mol Syst Biol. 2008; 4: 178.


fic Northwest

Using Flux Balance Analysis (FBA) in *A. niger* to predict potential antifungal targets in *Aspergillus fumigatus*

Pacific Northwest NATIONAL LABORATORY

A. niger genes predicted to be essential by FBA were blasted against the A. fumigatus and Homo sapiens genomes to find possible orthologs

Table 1 Potential antifungal targets in A. fumigatus

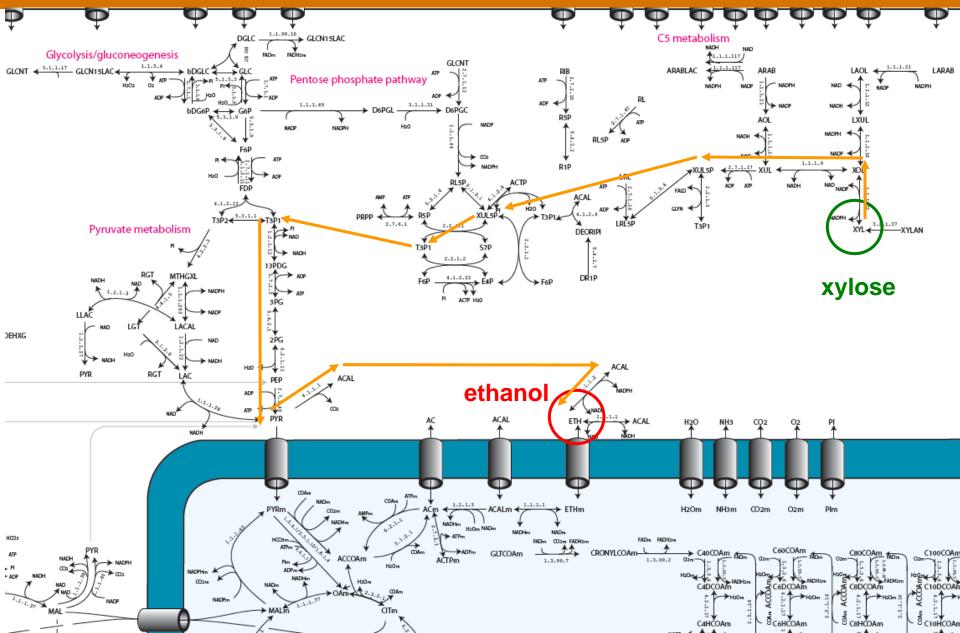
				r rodrotod artindriga	
EC no.	Essential enzyme	<i>A. fumgatus</i> gene ID	Additonal info	drug targets	
Amino acids I	biosynthesis			*	
	Chorismate mutase	Afu5g13130	Aromatic		
2.4.2.18	Anthranilate phosphoribosyl transferase	Afu4g11980	Aromatic		
2.1.1.17	Phosphatidylethanolamine N-methyltransferase	Afu2g15970	Aromatic		
	Prephenate dehydratase	Afu5g05690	Aromatic		
2.5.1.54	3-deoxy-7-phosphoheptulonate synthase	Afu1g02110	Aromatic		
4.2.1.19	Imidazoleglycerol-phosphate dehydratase	Afu6g04700	His		
3.5.4.19	phosphoribosyl-AMP cyclohydrolase	Afu1g14570	His		
3.1.3.15	Histidinol phosphatase	Afu4g04030	His		
	Histidinol dehydrogenase	Afu1g17660	His		
	ATP phosphoribosyltransferase	Afu7g04500	His		
	Homoserine dehydrogenase	Afu3g11640	Lys, Gly, Ser, Thr		
	Aspartate kinase	Afu5g05590	Lys, Gly, Ser, Thr		
	aspartate-semialdehyde dehydrogenase	Afu3g06830	Lys, Gly, Ser, Thr		
	Homocitrate synthase	Afu4g10460	Lys		
	Ketol-acid reductoisomerase	Afu3g14490	Val, Leu, Ile		
	homoserine O-acetyltransferase	Afu5g07210	Met		
	Methionine synthase	Afu4g07360	Met		
Propanoate n					
	2-methylisocitrate lyase	Afu6g02860			
	2-methylcitrate hydrolyase	Afu6g03730			
Fatty acid bio		46.4.00050	*		
	Methylene-fatty-acyl-phospholipid synthase	Afu1g09050			
	[ACP]acetyltransferase	Afu3g04220			
	Fatty-acid synthase	Afu3g04210			
	n d purine metabolism Thioredoxin reductase	Afu6g09740			
	Orotate phosphoribosyltransferase 1	Afu2g11290			
	Phosphoribosylaminoimidazole carboxylase	Afu4g12600			
		Alu4912000			
Cell wall bios	1,3-beta-Glucan synthase	Afu5g05770	1	Jette Thykaer, Mikael Andersen,	
	Trehalose-phosphatase	Afu3g05650		· · · · · · · · · · · · · · · · · · ·	,
Sterol biosyn		Alusgususu		and Scott Baker	
	Squalene synthase	Afu7g01220		Medical Mycology 2009;47 Supp	าโ
	Phosphomevalonate kinase	Afu5g10680			<u> </u>
NADH/NADPH		,		1:S80-7.	
	Nicotinate mononucleotide pyrophosphorylase	Afu3g05730			/
	abolism of amino groups				
	Glutamate N-acetyltransferase	Afu5g08120		×	
Manitol biosy		5		Pacific Northwes	st -
	Mannitol-1-phosphate 5-dehydrogenase	Afu2g10660		NATIONAL LABORAT	FOR

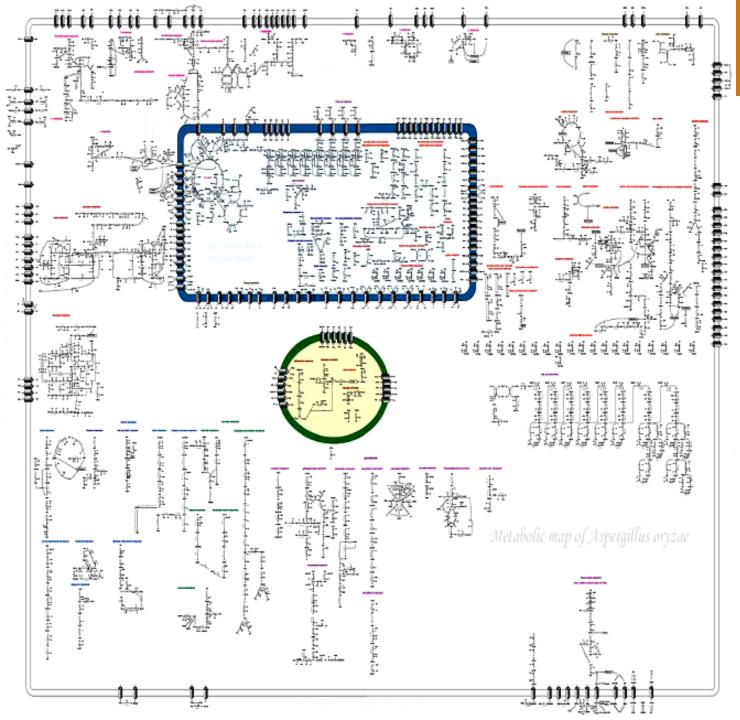
Predicted antifungal g targets

	\checkmark
Pacific	Northwest
NATI	IONAL LABORATORY

Ethanol overproduction by *Aspergillus oryzae* as a model for pentose utilization in consolidated biofuel production

• *A. oryzae* has been used for over 1000 years to saccharify rice for sake brewing.

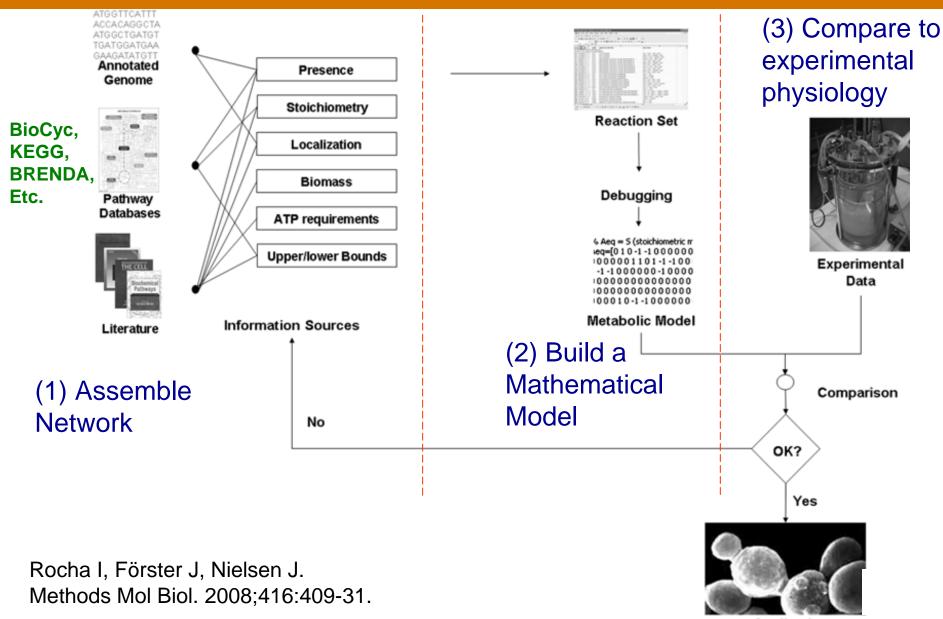

• It's the national fungus of Japan!



Flux balance analysis (FBA) to optimize ethanol production in *A. oryzae*

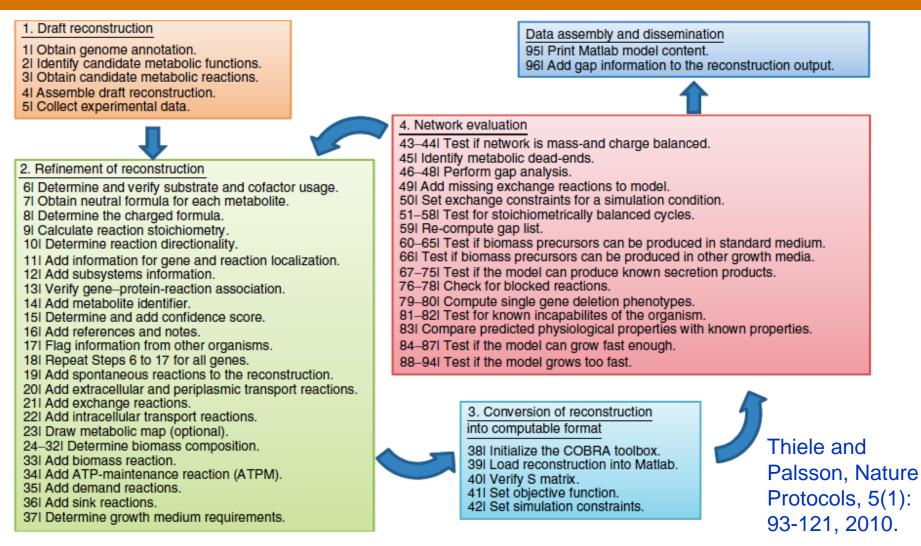
Aspergillus oryzae RIB 40

Genome-scale metabolic network model


Nielsen group, Chlamers/DTU

- •729 enzymes
- •1314 genes
- •1073 metabolites
- •1846 reactions
- •Mitochondrial & Peroxisome Compartments

•Vongsangnak, *et al.* BMC Genomics 2008



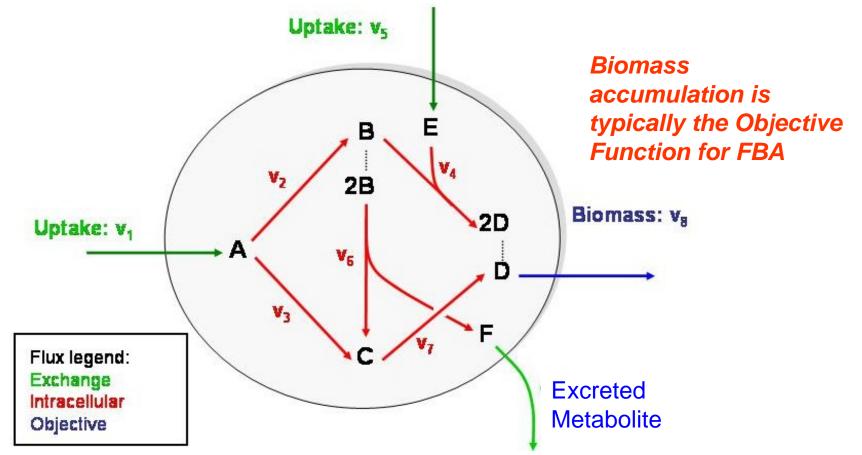
Stoichiometric network reconstruction and analysis

Applications

Stoichiometric network reconstruction and analysis

Figure 1 | Overview of the procedure to iteratively reconstruct metabolic networks. In particular, Stages 2–4 are continuously iterated until model predictions are similar to the phenotypic characteristics of the target organism and/or all experimental data for comparison are exhausted.

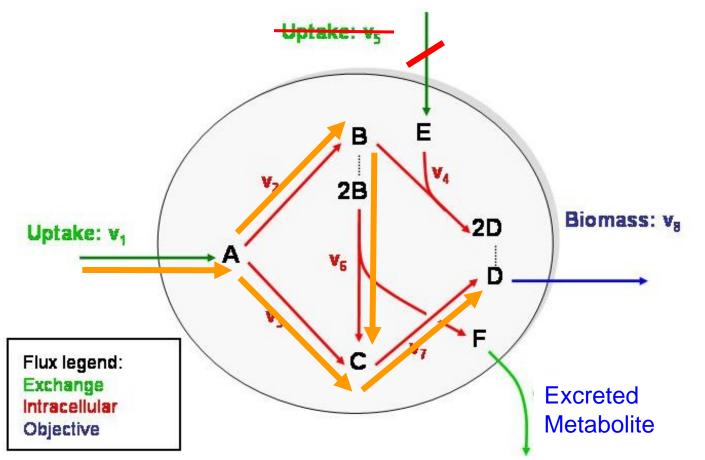
Estimated time requirements for constraint-based reconstruction and analysis (COBRA) from Thiele and Palsson


Draft reconstruction Collect experimental data Manual reconstruction refinement Determine biomass composition Mathematical model generation Network evaluation (debugging mode) Data assembly and dissemination days to weeks ongoing throughout process months to a year days to weeks days to a week week to months days to weeks

Nature Protocols, 5(1): 93-121, 2010.

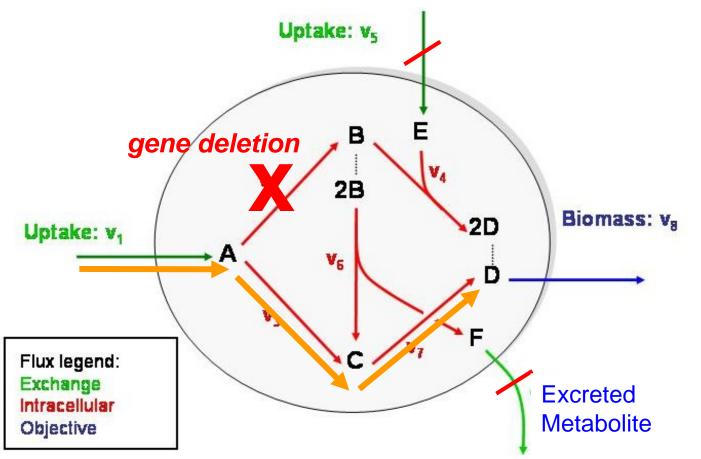
Concept of Flux Balance Analysis (FBA)

A steady-state model where all inputs and outputs sum to zero.

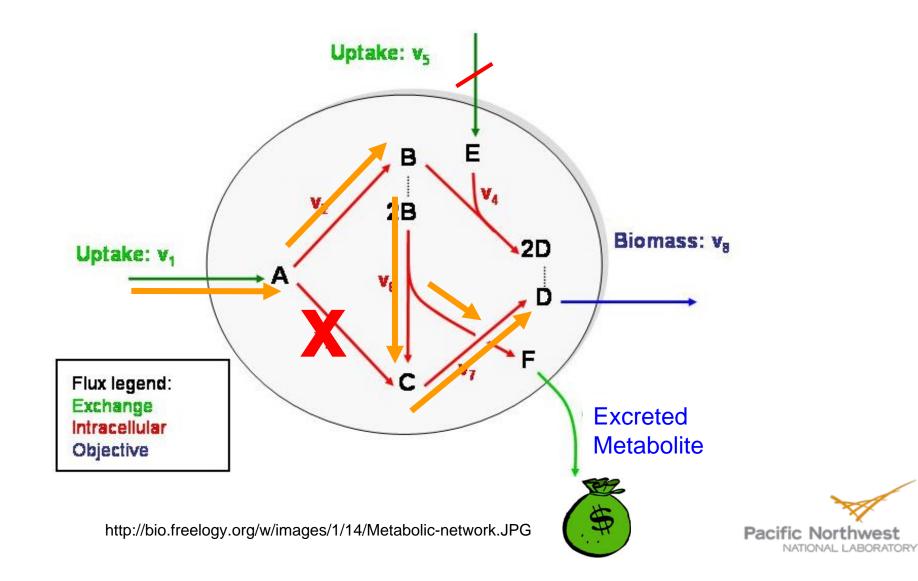


http://bio.freelogy.org/w/images/1/14/Metabolic-network.JPG http://bio.freelogy.org/wiki/User:JeremyZucker

17

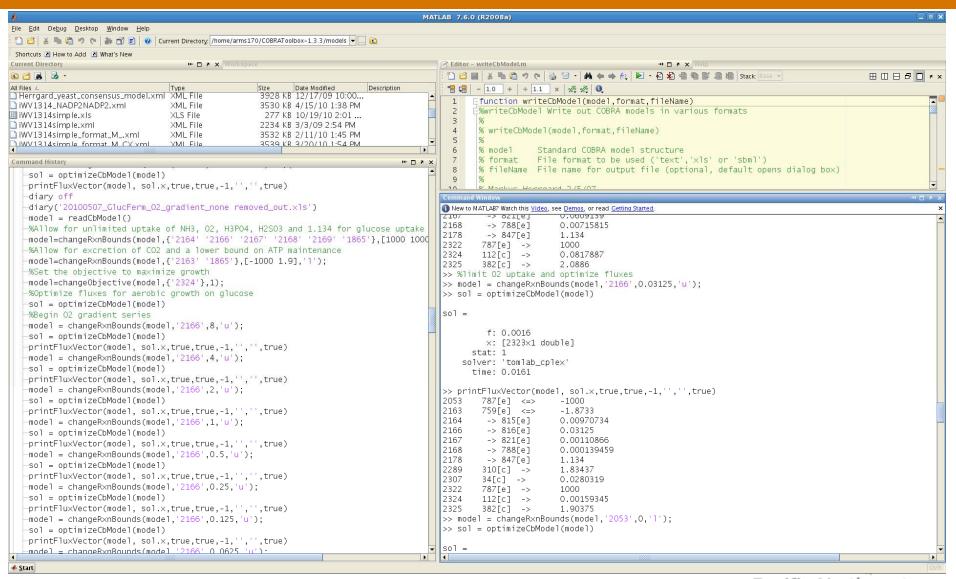

Constraining an uptake flux

http://bio.freelogy.org/w/images/1/14/Metabolic-network.JPG


Simulating a gene deletion

http://bio.freelogy.org/w/images/1/14/Metabolic-network.JPG

Gene deletion to optimize excretion of a specific metabolite



Software packages for FBA and related methods

- COBRA Toolbox (MATLAB)
- CellNetAnalyzer (MATLAB)
- OptFlux (v2.2 Windows; v1.37 Windows, Linux)
- MetaFluxNet (Windows)
- Systems Biology Research Tool (Multi-platform Java)

Using the COBRA Toolbox in MATLAB

Becker SA, *et al.* Quantitative prediction of cellular metabolism with constraintbased models: the COBRA Toolbox. Nature Protocols 2007;2(3):727-38 Pacific Northwest NATIONAL LABORATORY

FBA model structure in COBRA Toolbox/MATLAB

Composed of vectors and matrices for:

- reaction stoichiometry
- genes
- proteins (enzymes)
- Gene-protein-reaction
 (GPR) associations
- objective function selection
- reaction flux constraints

	GLCt1	HEX1	PGI	РЕК	FBP	FBA	TPI	EX_glc
glc-D[e]	(-1	0	0	0	0	0	0	-1
glc-D	1	-1	0	0	0	0	0	0
atp	0	-1	0	-1	0	0	0	0
н	0	1	0	1	0	0	0	0
adp	0	1	0	1	0	0	0	0
g6p	0	1	-1	0	0	0	0	0
f6p	0	0	1	-1	1	0	0	0
fdp	0	0	0	1	-1	-1	0	0
pi	0	0	0	0	1	0	0	0
h2o	0	0	0	0	-1	0	0	0
g3p	0	0	0	0	0	1	1	0
dhap	0	0	0	0	0	1	-1	0)

First steps of glycolysis pathway Pacific

Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard Mjbased. Nature Protocols 2007;2(3):727-38.

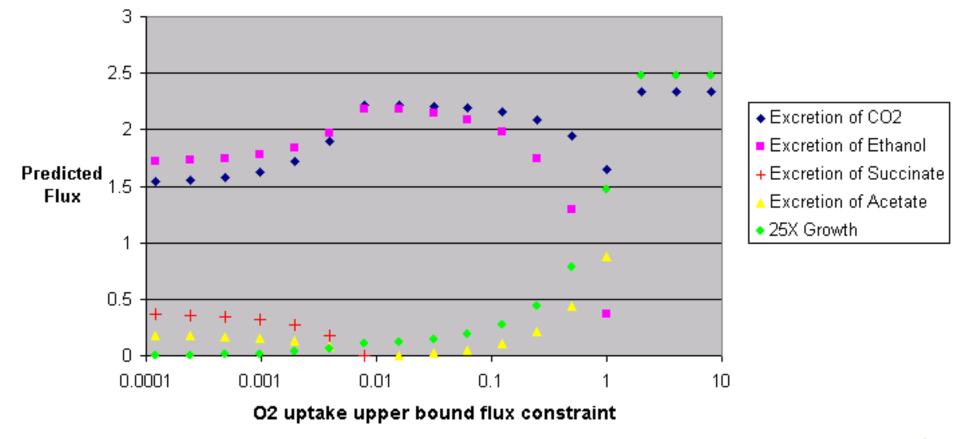
Simulating metabolism under an O₂ uptake gradient to predict optimal ethanol production level in *A. oyrzae*

Uptake unlimited

Exchange Flux Constraints (mmol gDW⁻¹ hr⁻¹)

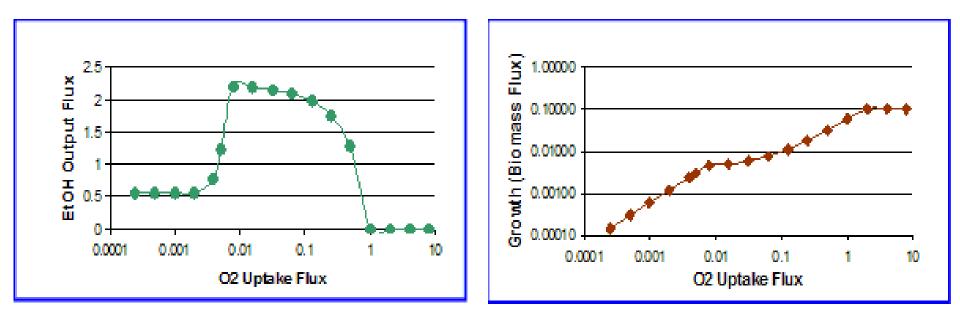
- NH₃, H₃PO₄, H₂SO₃
- Glucose Uptake of 1.134
 - Uptake stepwise gradient from 0.0001 to 10
- ATP Maintain intracellular 1.9

Objective Function

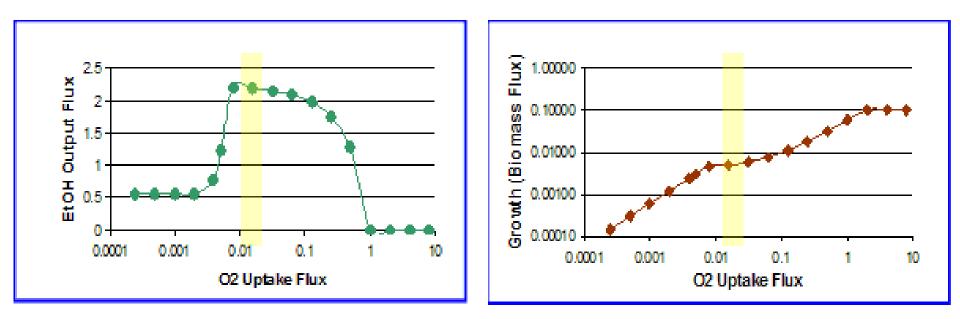

Set as "Growth" to maximize combined fluxes for generating cell biomass constituents (DNA, RNA, amino acids, lipids, carbohydrates, etc.)

Pacific Northwest

 $-O_{2}$

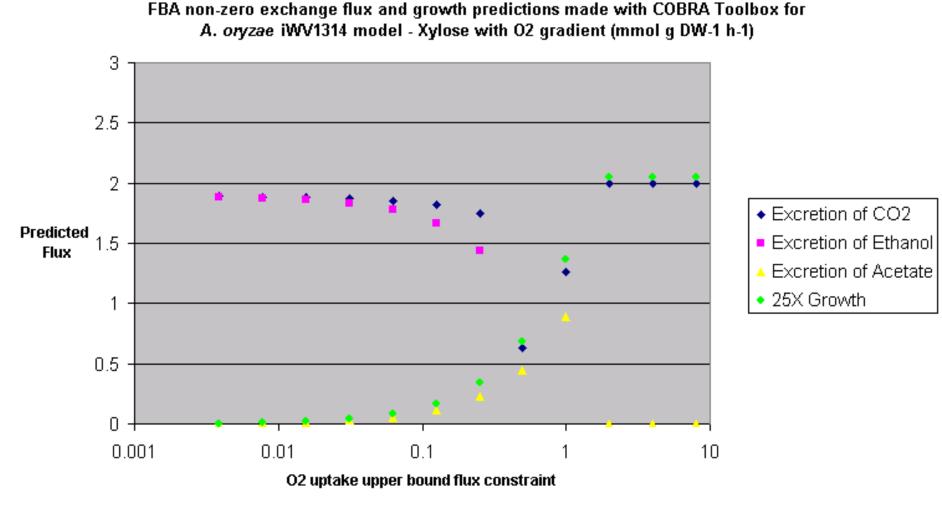

FBA simulation of *A. oryzae* fermentation on glucose

FBA non-zero exchange flux and growth predictions made with COBRA Toolbox for A. oryzae iWV1314 model - Glucose with O2 gradient (mmol g DW-1 h-1)


Predicted ethanol excretion maximum correlates with a plateau in growth in FBA simulation

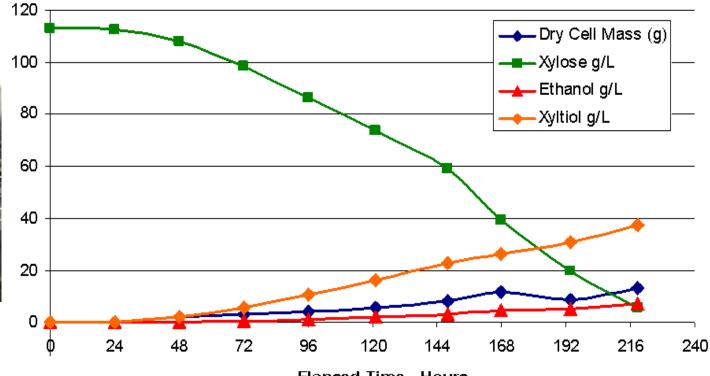
X and Y flux values = in mmol $g(DW)^{-1}$ hr⁻¹

A genome-wide gene deletion series was conducted under simulated microaerobic conditions (0.02 mmol g_{DW}^{-1} hr⁻¹)



X and Y flux values = in mmol $g(DW)^{-1}$ hr⁻¹

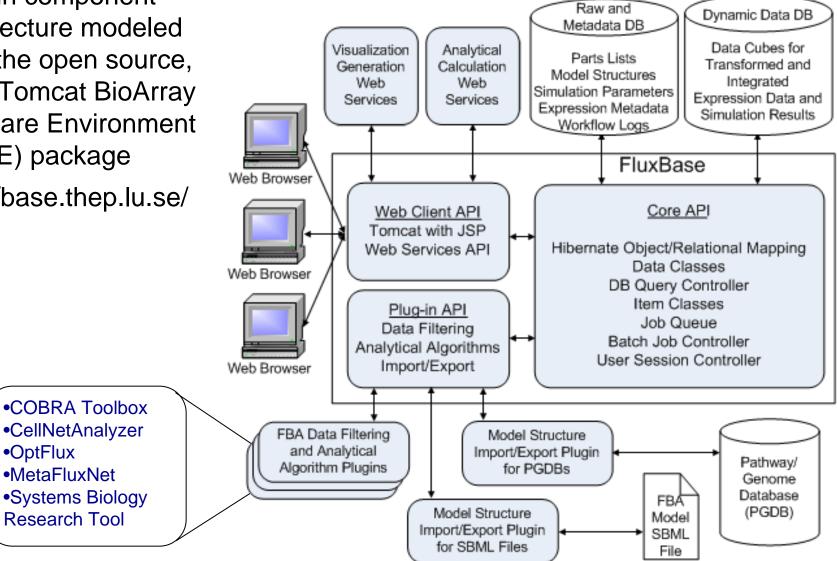
Unconfirmed result: 11 gene deletions were predicted to boost ethanol excretion by 1-5%.


FBA simulation of *A. oryzae* fermentation on xylose

A. oryzae fermentation results on xylose

Elapsed Time - Hours

General "end-user" impressions of currently available FBA models and software


- "Formatted in SBML" != compatible across software packages.
- Model validation by growth rate may not guarantee accurate flux predictions for metabolites of interest.
- More basic research is needed on how to determine the true objective function of organisms under stress, far from idealized growth conditions.
- Metabolic reconstructions should ideally be community projects rather than competing products published by individual labs.
- FBA software should be more like an IDE (i.e., Eclipse) to support the "write-run-debug-run" cycle of model development and refinement.

•More automated tools for diagnosing errors in malfunctioning models are needed.

Suggested architecture for a collaborative metabolic network reconstruction & analysis and PGDB data management system

Plug-in component architecture modeled after the open source, Java/Tomcat BioArray Software Environment (BASE) package http://base.thep.lu.se/

Data management features in BASE that would be useful in a collaborative FBA/PGDB computing environment

ど BASE 2	.7.0 @ fur	igen	- Mozilla Firefox					×
<u>File E</u> dit	: <u>V</u> iew	Hi <u>s</u> tory	<u>B</u> ookmarks <u>T</u> ools <u>H</u> elp					\$\$\$
()	- C	×	1 http://fungen.pnl.gov:8080/base2/			☆ • G	▼ Google	2
File Vi	ew Arra	y LIMS	Administrate Extensions Help		23	🕑 🔻 🛛 📇 - none - 👻	😞 jcollett (Jim Collett) 👻	-
Array	y desi	igns						
🔒 Nev	v 😽 C	elete	🕞 Restore 🦽 Share 🚨 Take owne	rship 🔲 Columns 剩 Im	port 🕞 Export			
6 4	• •	1 (3)	nits, 30 per page)					
-view.	/ presets -	-	Name 👻	Platform	File features	Owner	Shared to	
	3			Affymetrix 💌				
1		\$	AsprgDTUa520520F.cdf	Affymetrix	43776	Scott Baker	MG Team	
2		<u></u>	DTU Aspergillus Tri-species Chip	Affymetrix	43776	Scott Baker	MG Team	
3		<u></u>	PNNLTOL1c520468F	Affymetrix	60436	Jim Collett	Biomarkers Initiative	
60		1 (3)	nits, 30 per page)					
			GE is currently supported by Lund Universi . This server administered by: Jim Collett	ty through SCIBLU. Previous pa	trons of the BASE project w	ere the Knut and Alice Wa	illenberg Foundation and the	
× Find:			I Next 👚 Previous 🖌 Highlight all	Match case				

User- and group-level permissions and item ownership facilitate provenance control in projects with very large datasets and complex analytical workflows.

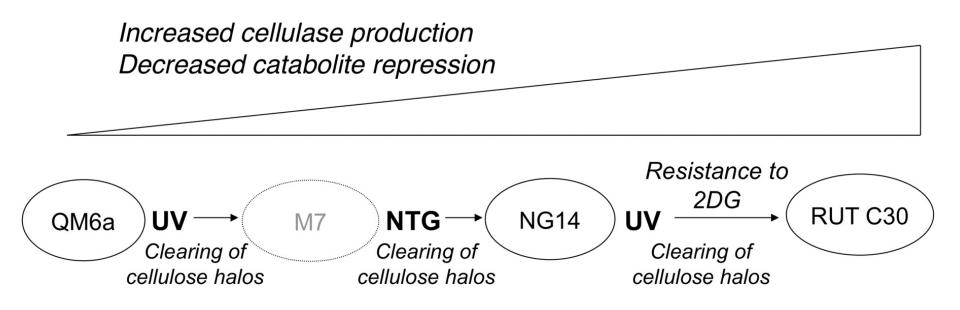
Analytical workflow features in BASE that would be useful in a collaborative FBA/PGDB computing environment

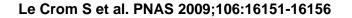
🜙 BASE 2.7.0 @ fungen Mozilla Firefox							
Eile Edit View History Bookmarks Iools Help					4 ⁰ 4 0 5		
🔇 💽 C 🗙 🏠 📘 http://fungen.pnl.gov:8080/base2/				☆ • C • ∞	ogle 🔎		
File View Array LIMS Administrate Extensions Help			🤧 🕑 ▾	🚍 - none - 👻 🍾	S jcollett (Jim Collett) 👻		
Experiments > A. niger Manganese Effect	ts 🕨 APT Su	mmarize					
Properties							
Edit 🐳 Delete 🖺 Copy 🥹 Help							
Permissions on this item: <i>Read, Use, Write, Delete</i>							
Transformation		Plugin & parameter	5				
Name APT Summarize		Plugin	APT Summarize plug	j-in			
Experiment A. niger Manganese Effects Description		Plugin configuration Bioassay set name	New bioassayset				
Job		Experiment	Experiment A. niger Manganese Effects				
Job Run plugin: APT Summarize plug-in		anaiysis Raw bioassays	_ analysis rma Raw bioassays DTU_Aniger_H2O-1, DTU_Aniger_H2O-2, DTU_Aniger_H2O-3,				
Started 2009-10-02 17:39:34 Ended 2009-10-02 17:42:27		DTU_Aniger_minusMn-1, DTU_Aniger_minusMn-2, DTU_Aniger_minusMn-3, DTU_Aniger_plusMn-1,					
Server fungen			DTU_Aniger_plusMn	-2, DTU_Aniger_plu	isMn-3		
Items related to this transformation							
None.							
Sub analysis tree							
🖏 Delete 🔀 Restore 🔟 Columns 🚱 Export							
-view / presets - 💌 Name	Spots/Values	Reporters	Plugin	Date 🔺	Tools		
1 🗖 🖃 🖼 APT Summarize			APT Summarize	2009-10-02 17:42:27	D		
2 🗖 🗄 👘 All Probes	393984	43776			∎ 🖬 🕞 🐓 🎄 🚥		
3 □ 🗄 Filter: score(3) == 3000			JEP filter plugin	2009-10-26 17:28:59	D		
4 🗖 🖳 🔤 AFFX probes only	558	62			💼 🖬 🕒 🛠 🏇 🚥		
5 □ [±] Filter: score(6) == 6000			JEP filter plugin	2009-10-05 16:23:38			
6 🗖 🛄 🔤 🖌 niger probes (JGI prefix) 100098	11122			▲ ■ ● ¥*		

The development of BASE is currently supported by Lund University through SCIBLU. Previous patrons of the BASE project were the Knut and Alice Wallenberg Foundation and the Swedish Cancer Society. This server administered by: Jim Collett

Tracking the roots of cellulase hyperproduction by the fungus *Trichoderma reesei* using massively parallel DNA sequencing

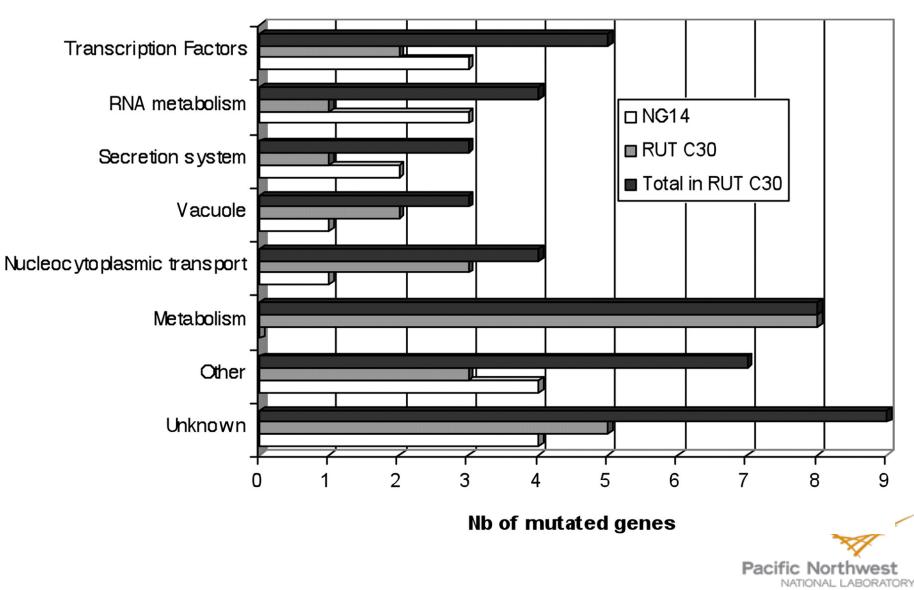
Stéphane Le Crom^{a,b,c,1}, Wendy Schackwitz^{d,1}, Len Pennacchio^d, Jon K. Magnuson^e, David E. Culley^e, James R. Collett^e, Joel Martin^d, Irina S. Druzhinina^f, Hugues Mathis⁹, Frédéric Monot⁹, Bernhard Seiboth^f, Barbara Cherry^h, Michael Rey^h, Randy Berka^h, Christian P. Kubicek^f, Scott E. Baker^{d,e,2}, and Antoine Margeot^{9,2}


^aInstitut National de la Santé et de la Recherche Médicale, U784, 46 rue d'Ulm, 75230 Paris Cedex 05, France; ^bInstitut Fédératif de Recherche 36, Plate-forme Transcriptome, 46 rue d'Ulm, 75230 Paris Cedex 05, France; ^cÉcole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France; ^dDepartment of Energy Joint Genome Institute, 2800 Mitchell Avenue, Walnut Creek, CA 94598; ^ePacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352; ¹Institute of Chemical Engineering, Technische Universitat Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria; ⁹IFP, Département Biotechnologie, Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France; and ^hNovozymes, Inc., 1445 Drew Avenue, Davis, CA 95618


Edited by Joan Wennstrom Bennett, Rutgers University, New Brunswick, NJ, and approved July 27, 2009 (received for review May 28, 2009)

Le Crom, Schackwitz, et al. 2009. PNAS 106 (38): 16151-6

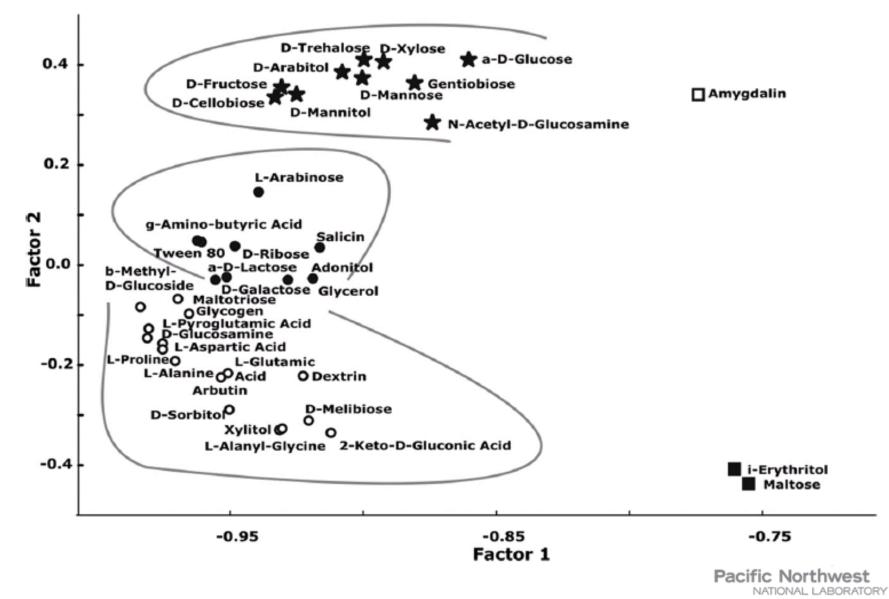
Genealogy of mutagenized T. reesei strains



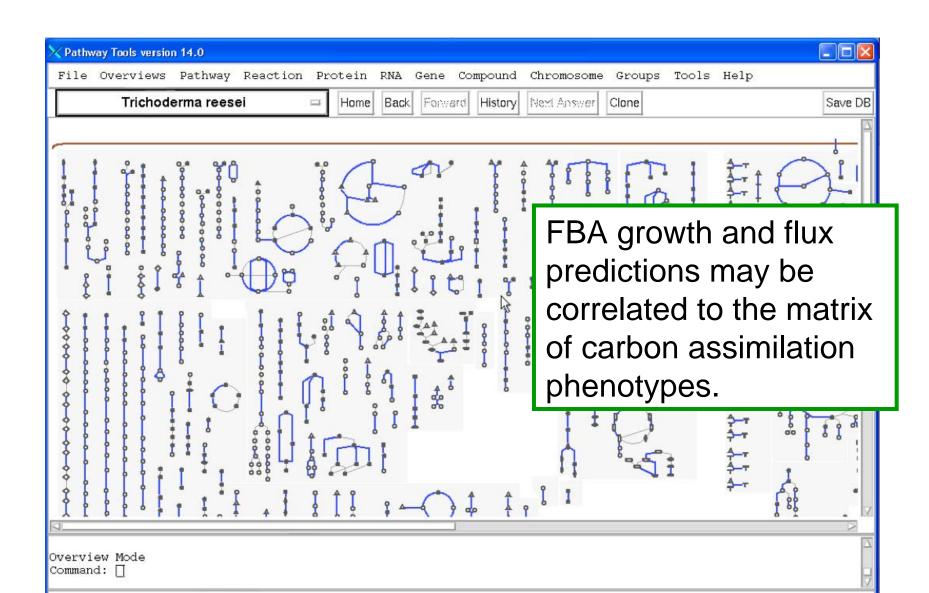
Reads from *T. reesei* strains NG14 and RUT C30 aligned with QM6a to identify SNVs and indels

195611 195621 195631 195641 195651 195661 195671 195681 195691 195701 195711 195721 195731	195741 195751
ccagcttttcaagggctgggccatttccaagacttccaaactggcagcggctggtgatccatgaccaatatcaggtttcacagggtggtggtcgaccttttcccacgcttggcgacggtcgggctggtgatccatgacaatatcacgtttcacagggtggtggtggtggtggtggtggtggtggtggtggtgg	
<u>,,,,,,,,</u>	
A	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<u></u>	
линин Т.С	
лини ААА. Т.СТ	
	T
	,,,,,,,, ^t ,,,,,,,,,,,,,,,,,,,,
ллллллллллллллллллллллллллллллллллллл	*** ^t **************
	. T

۰٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,a,,,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ÀÀÀÀÀ	
A	
A	
A	
	,,,,,,,t,
,,,,,,,,,,,,,a,,,,,,,,,,,,,,,,,,,,,,,,	
AC	



Gene categories of mutagenic events


Le Crom S et al. PNAS 2009;106:16151-16156

Biomass growth profiling on 95 carbon substrates using the Biolog phenotyping system

Le Crom S et al. PNAS 2009;106:16151-16156

Plans for using P-Tools 14. 5+ to correlate SNVs with KO experiments, and to help generate FBA models

Acknowledgements

PNNL Fungal Biotech Team

Scott Baker (Genomics PM), Deanna Auberry, Ken Bruno, Mark Butcher, Dave Culley, Ziyu Dai, Shuang Deng, Beth Hofsted, Sue Karagiosis, Debbie Lee, John Magnuson, Iva Jovanovic, Ellen Panisko, Andy Zwoster + Sebastian Jaramillo-Riveri. Special thanks to our EU and JGI collaborators.

