Marco Galardini (@mgalactus)

DuctApe

a tool for the analysis and correlation of genomic and high throughput phenotypic Biolog data

University of Florence Microbial genetics lab Florence computational biology group

@combogenomics combo.unifi@gmail.com http://www.unifi.it/dbefcb

- Three bioinformatics groups from Unifi
- Est. 2011
- Microbiology (clinical, agronomical, ecological)
- Biological sequences information analysis
- Bioinformatics softwares development

- Italian Agricultural Research Council
- Soil and agricultural microbiology

Other collaborations

- Bacterial genomics and phenomics ۲
- Phenotypic assays on chemical sensitivities

Florence Conference on Phenotype MicroArray Analysis of Microorganisms

The Environment, Agriculture, and Human Health

The wishing well

The genomics and phenomics era

5 **The wishing well**

The genomics era

Nature Reviews | Microbiology

MacLean et al., 2009

genomesonline.com

corb

The genomics era

- Metabolic networks reconstruction
- From genomes to metabolomes
- High throughput genomics/metabolomics

http://www.genome.jp/kegg/

The phenomics era

- Many compounds on KEGG DB
- High throughput phenomics

www.biolog.com

Genome data analysis

- Genome map to KEGG
- Pangenome prediction
 - core
 - accessory
 - unique

Phenome data analysis

- Metabolic activity parameters
- Replica management
- Clear comparisons
- Clear visualizations
- Compounds map to KEGG

How to combine genomic and phenomic data?

- All data in a single metabolic map
- Genetic basis for phenotypic differences

¹⁰ The missing link

DuctApe

The missing link between genomics and phenomics

Three different experimental setups

Single strain(s)

Mutant(s)

- Correlation of mutated genes / different phenotypes
- Deletion / insertion mutants

PanGenome

- Prediction of Core / Accessory / Unique genome
- Correlation between Dispensable genome and phenotypes

Three different modules

dgenome

- Genes are mapped to KEGG database
- PanGenome prediction (Blast-BBH)

dphenome

- Phenotype microarray data handling (sigmoid fit)
- Classification of metabolic activity (Activity index)
- Compounds are mapped to KEGG database

dape

- Generation of combined KEGG metabolic maps
- Metabolic network analysis (through graph algorithms)
- Metabolic hotspots prediction

dgenome Genomics made easy

- Kyoto Encyclopedia of Genes and Genomes
- **KEGG public API**
- Detailed info on:
- Reactions
- Compunds
- Pathways

Pangenome prediction

- Many genomes
 - Serial BBH
 - User-defined PanGenome
 - Core Genome (conserved pathways)
 - Dispensable Genome (variable pathways)
 - Accessory Genome
 - Unique Genome

dphenome Painless high-throughput phenomics

From raw data to phenotypic variability

1. Parsing

From raw data to phenotypic variability

1. Parsing

2. Control signal subtraction (optional)

From raw data to phenotypic variability

1. Parsing

2. Control signal subtraction (optional)

3. Signal refinement

From raw data to phenotypic variability

1. Parsing

2. Control signal subtraction (optional)

3. Signal refinement

4. Sigmoid fit

Modeling of the Bacterial Growth Curve

M. H. ZWIETERING,* I. JONGENBURGER, F. M. ROMBOUTS, AND K. VAN 'T RIET Department of Food Science, Agricultural University Wageningen, P.O. Box 8129, 6700 EV Wageningen, The Netherlands

Received 5 January 1990/Accepted 4 April 1990

Model	Equation
Logistic	$y = \frac{a}{[1 + \exp(b - cx)]}$
Gompertz	$y = a \cdot \exp[-\exp(b - cx)]$
Richards	$y = a \{1 + v \cdot \exp[k(\tau - x)]\}^{(-1/v)}$

From raw data to phenotypic variability

5. Parameters extraction

From raw data to phenotypic variability

5. Parameters extraction

+ Area + Average height

Phenotypic variability at a glance

Phenotypic variability at a glance

Activity index (AV)

Clusters (zero, kmeans): 10

Fast: from raw .csv files to AV in less than 5 minutes

- Easier comparisons
- More understandable metrics
- Different experiments comparison

н

Activity index (AV)

PM07

PM07

Plates heatmaps: phenotypic variability at a glance

Activity index (AV)

AV boxplots: overall strains comparison (also on single compounds categories)

AV rings: overall strains comparison

Activity index (AV)

Replica management: discard inconsistent replica using the Δ AV

33 dape

Whole metabolic network reconstruction

NITROGEN METABOLISM

Interactive metabolic maps (as web pages)

- Reactions copy number
- Compounds AV

35 dape

Interactive metabolic maps (as graph files)

- Can be used with graph analysis softwares (i.e. Gephi)
- Generation of tables with network statistics on single pathways

dape 36

Interactive metabolic maps (as graph files)

- Can be used with graph analysis softwares (i.e. Gephi)
- Generation of tables with network statistics on single pathways

Metabolic network comparisons

Under the hood Technical features

DuctApe comes as a UNIX command line program

- Clear, modular and expressive syntax
- <u>A web interface is under development</u>
- <u>Next versions will be compatible with opm</u>

Technical features

Language

Standing on the shoulders of giants

- Curve fitting
- •Signal handling
- •Clustering
- •Sequence handling
- •Plots
- Metabolic network (networkx)

http://combogenomics.github.com/DuctApe

"combogenomics ductape"

ductape-users@googlegroups.com

@combogenomics

University of Florence
Alessio Mengoni
Marco Bazzicalupo
Emanuela Marchi
Giulia Spini
Francesca Decorosi
Carlo Viti
Luciana Giovannetti

Biolog Inc.
Barry Bochner

CRA
Stefano Mocali
Alessandro Florio
Anna Benedetti

• University of Lille Emanuele Biondi

