Marco Galardini (@mgalactus)

DuctApe

a tool for the analysis and correlation of genomic and high throughput phenotypic Biolog data

University of Florence
Microbial genetics lab
Florence computational biology group

04/03/2013
Who we are

Three bioinformatics groups from Unifi
Est. 2011
Microbiology (clinical, agronomical, ecological)
Biological sequences information analysis
Bioinformatics softwares development

Italian Agricultural Research Council
Soil and agricultural microbiology
Who we are

Other collaborations

- Bacterial genomics and phenomics
- Phenotypic assays on chemical sensitivities

Florence Conference on Phenotype MicroArray Analysis of Microorganisms
The Environment, Agriculture, and Human Health
Politecnico di Sesto Fiorentino, Florence, Italy, March 19-21, 2008
The wishing well
The genomics and phenomics era
The genomics era

MacLean et al., 2009
The genomics era

• Metabolic networks reconstruction
• From genomes to metabolomes
• High throughput genomics/metabolomics

http://www.genome.jp/kegg/
The wishing well

The phenomics era

- Many compounds on KEGG DB
- High throughput phenomics
Introduction

Genome data analysis
- Genome map to KEGG
- Pangenome prediction
 - core
 - accessory
 - unique

** Phenome data analysis**
- Metabolic activity parameters
- Replica management
- Clear comparisons
- Clear visualizations
- Compounds map to KEGG
How to combine genomic and phenomic data?

- All data in a single metabolic map
- Genetic basis for phenotypic differences
The missing link between genomics and phenomics

DuctApe

The missing link between genomics and phenomics
Three different experimental setups

Single strain(s)

Mutant(s)
- Correlation of mutated genes / different phenotypes
- Deletion / insertion mutants

PanGenome
- Prediction of Core / Accessory / Unique genome
- Correlation between Dispensable genome and phenotypes
Three different modules

dgenome
- Genes are mapped to KEGG database
- PanGenome prediction (Blast-BBH)

dphenome
- Phenotype microarray data handling (sigmoid fit)
- Classification of metabolic activity (**Activity index**)
- Compounds are mapped to KEGG database

dape
- Generation of combined KEGG metabolic maps
- Metabolic network analysis (through graph algorithms)
- Metabolic hotspots prediction
The missing link

dgenome
Genomics made easy
Genome map to KEGG (1)

Blast BBH on a local KEGG database*

Blast BBH using KASS web-server**

*Since July 1th 2011, the access to KEGG FTP needs a $2000/$5000 licence

**Available for free, fast and reliable
Genome map to KEGG (2)

Fast, multi-threaded access

KEGG public API

Detailed info on:
• Reactions
• Compounds
• Pathways
Pangenome prediction

- Many genomes
 - Serial BBH
 - User-defined Pan Genome

- **Core Genome** (conserved pathways)
- **Dispensable Genome** (variable pathways)
 - Accessory Genome
 - Unique Genome

![Pan Genome chart]
The missing link

dphenome
Painless high-throughput phenomics
1. Parsing
From raw data to phenotypic variability

1. Parsing

2. Control signal subtraction (optional)
From raw data to phenotypic variability

1. Parsing

2. Control signal subtraction (optional)

3. Signal refinement
From raw data to phenotypic variability

1. Parsing

2. Control signal subtraction (optional)

3. Signal refinement

4. Sigmoid fit

Modeling of the Bacterial Growth Curve

M. H. ZWIETERING,* J. JONGENBURGER, F. M. ROMBOHTS, AND K. VAN ‘T RIET
Department of Food Science, Agricultural University Wageningen, P.O. Box 8129,
6700 EV Wageningen, The Netherlands

Received 5 January 1990/Accepted 4 April 1990

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic</td>
<td>(y = \frac{a}{1 + \exp(b - cx)})</td>
</tr>
<tr>
<td>Gompertz</td>
<td>(y = a \cdot \exp(-\exp(b - cx)))</td>
</tr>
<tr>
<td>Richards</td>
<td>(y = a \left[1 + v \cdot \exp \left(\frac{a(r - s)}{v} \right) \right]^{(-1/v)})</td>
</tr>
</tbody>
</table>
5. Parameters extraction
From raw data to phenotypic variability

5. Parameters extraction

- Min
- Lag
- Max
- Plateau
- Slope
- Area
- Average height
Phenotypic variability at a glance
Phenotypic variability at a glance

- Multiple strain comparison
- How to discriminate different activities?
- A single, summarized value is needed

AV = Activity Index
Activity index (AV)

Clusters (zero, kmeans): 10

K-means clustering on 5 parameters, with 10 clusters

Fast: from raw .csv files to AV in less than 5 minutes
Activity index (AV)

- Easier comparisons
- More understandable metrics
- Different experiments comparison
Activity index (AV)

Plates heatmaps: phenotypic variability at a glance
Activity index (AV)

AV boxplots: overall strains comparison (also on single compounds categories)
Activity index (AV)

AV rings: overall strains comparison
Replica management: discard inconsistent replica using the Δ AV
dape
The missing link
Whole metabolic network reconstruction
Single genome metabolic network

Interactive metabolic maps (as web pages)
- Reactions copy number
- Compounds AV
Single genome metabolic network

Interactive metabolic maps (as graph files)
• Can be used with graph analysis softwares (i.e. Gephi)
• Generation of tables with network statistics on single pathways
Interactive metabolic maps (as graph files)
• Can be used with graph analysis softwares (i.e. Gephi)
• Generation of tables with network statistics on single pathways
Metabolic network comparisons
Under the hood

Technical features
Under the hood

Technical features

DuctApe comes as a UNIX command line program

- Clear, modular and expressive syntax
- **A web interface is under development**
- Next versions will be compatible with opm
Under the hood

Technical features

Language

Standing on the shoulders of giants

• Curve fitting
• Signal handling
• Clustering
• Sequence handling
• Plots
• Metabolic network (networkx)
Under the hood

http://combogenomics.github.com/DuctApe

“combogenomics ductape”

ductape-users@googlegroups.com

@combogenomics
Acknowledgements

- **University of Florence**
 Alessio Mengoni
 Marco Bazzicalupo
 Emanuela Marchi
 Giulia Spini
 Francesca Decorosi
 Carlo Viti
 Luciana Giovannetti

- **Biolog Inc.**
 Barry Bochner

- **CRA**
 Stefano Mocali
 Alessandro Florio
 Anna Benedetti

- **University of Lille**
 Emanuele Biondi