

Characterization of a Rock-Inhabiting Microcolonial (Black) Fungus with the Biolog

Restrictions, Solutions, Results

Corrado Nai

PhD candidate at the Free University of Berlin
BAM Federal Institute of Material Research and Testing
Department 4 (Materials & Environment)
Prof. Dr. Anna A. Gorbushina

Federal Institute for Materials Research and Testing

Introduction: Our research (and why it is relevant)

(UV, salinity, oligotrophy, ionizing radiation,...)

Gostincar et al. (2010), FEMS Microbiol Ecol

Biofiltration

© Sybren de Hoog, CBS-KNAW Prenafeta-Boldú *et al.* (2006), *FEMS Microbiol Lett*

cyanobacteria bacteria inorganic substances

Gorbushina (2007), Environ

Gorbushina (2007), Environm Microbiol

Fungal genetics

(biodiversity, evolution,

(a.k.a. black yeasts, a.k.a. microcolonial fungi, a.k.a. dematiaceous fungi, a.k.a. meristematic fungi)

Black fungi

Krumbein & Jens (1981) *Oecologia*; Friedmann (1982), *Science*; Staley *et al.* (1982), *Science*

Astrobiology e.g. Onofri *et al.* (2008),

Stud Mycol

Material colonization

Cologne (Germany)

Warscheid & Braams (2000), Int Biodet Biodegr

Fungal pathogenesis

© Sybren de Hoog CBS-KNAW

© Cécile Guiedan Gueidan et al. (2008), Stud Mycol; Ruibal et al. (2009), Stud Mycol

Black Yeasts Database at the Broad Institute

Introduction: Our research (how we contribute)

Black fungi

(a.k.a. black yeasts, a.k.a. microcolonial fungi, a.k.a. dematiaceous fungi, a.k.a. meristematic

fungi)

Knufia petricola A95 (former Sarcinomyces petricola)

+ other black fungi (e.g. *Coniosporium apollinis*)

A model rock-inhabiting black fungus

A95 + Nostoc punctiforme ATCC29133

(Subaerial-)Biofilm model

Fungal genetics

(DNA isolation, first-runs of pyrosequencing, generation of cDNA, karyotyping by PFGE)

Collaboration with Dr. Christina

Cuomo et al. (Broad Institute)

Extremotolerance

(mechanisms of oligotrophy, melanin synthesis, secondary metabolites)

Microbial ecology

(establishment of SABs, interactions with phototrophs, analysis of natural biofilm communities by DGGE)

Dr. Steffi Noack et al.

Material colonization

(colonization of solar panels, simulation of degradation of stone material with flow through-chambers)

Dr. Steffi Noack, Franz Seiffert

A prerequisite: Knowledge of A95

Knufia petricola A95

Use of the Biolog[™] System to generate a broad phenotypical profile of A95

- PM1-2 (C metabolism), PM3 (N metabolism), PM4 (P & S metabolism)
- PM5 (growth factors, vitamins)
- PM9 (salt stress), PM10 (pH)

Total ~ 1,000 different growth conditions

A95 & Biolog System - Restrictions

- 1) **Clumpy growth** → OD measurements not reproducible
- 2) Association of dye with cell clumps, melanization → dito
- 3) Extremely oligotrophic \rightarrow growth in negative control wells (especially without N, P and S)

Malt extract media, 25 °C

Pre-experiment: FF-IF pH 5, yeast nitrogen base + 100 mM glc + N source + Redox dye (8 days at 25 °C)

Growth in **PM1** buffered at pH 5 (11 d at 25 °C)

Growth in PM10 (7 d at 25 °C)

Growth and pink colour development (~3 wks at 25 °C) in negative control well of:

- (A) PM3 (A1, no N)
- (B) PM4 (A1, no P) and
- (C) PM4 (F1, no S)

(from Nai C et al., in revision)

A95 & Biolog System - Solutions

- 1) **Reduce inoculum and/or incubation time** → reduce growth in negative control
- 2) Grow at suboptimal conditions (e.g. unbuffered plate) → dito
- 3) Adopt an ad hoc scoring system (evaluation by eye) → semi-quantitative method

at least 2 unbiased (independent) evaluations at least 3 biological replicates calculate median and quartiles

0.5-2 observed growth

0 no growth

b borderline (doubtful growth)

Growth in PM10 (7 d at 25 °C)

... not solved for S metabolism!

Growth in plate **PM1** buffered at pH 5 (11 d at 25 °C)

A95 & Biolog System - (Some) Results

- pH optimum at around pH 5 (PM10)
- Halotolerant (PM9)

Prototrophic (no special nutritional requirements), but thiamine stimulates growth (PM5)

■ Good growth on monoaromatic compounds p-Hydroxybenzoic acid, p-/m-hydroxyphenylacetic acid

Growth in PM5 (11 d at 25 °C)

- Little overlap between sets of nutrient sources
 Amino acids/dipeptides: poor C source, preferred N source
- **Limited ability to grow on metabolic intermediates**e.g. pentose pathway: good growth on L-ara and D-xylose, but not on L-arabitol and xylotol (no uptake)

Nai C et al., in revision at Fungal Genetics and Biology

A95 & Biolog System - Outlook

Further characterization of spontaneous mutants and other black fungi

Coniosporium apollinis CBS100218 (annotated sequence released on 03/2013 by Broad)

Cell wall biosynthesis mutants

Mechanisms of oligotrophy in A95

Sustained growth under nutrient limitation (especially N, P and S)

Test metabolization of hydrocarbons (benzene, toluene, pentane)

p-Hydroxybenzoic acid very good C source

Degradation of cellulose

Cellobiose [glucose $\beta(1\rightarrow 4)$ glucose] is a good C source Mutants seem unable to grow on cellulose

Role of trehalose

Trehalose is one of the few very good C sources at suboptimal growth conditions (high pH)

Thank you for your attention!

